Speedup Stacks: Identifying Scaling Bottlenecks in Multi-Threaded Applications

Stijn Eyerman

Kristof Du Bois

Lieven Eeckhout

ELIS Department, Ghent University, Belgium

Abstract

Multi-threaded workloads typically show sublinear
speedup on multi-core hardware, i.e., the achieved speedup
is not proportional to the number of cores and threads. Sub-
linear scaling may have multiple causes, such as poorly
scalable synchronization leading to spinning and/or yield-
ing, and interference in shared resources such as the last-
level cache (LLC) as well as the main memory subsystem.
It is vital for programmers and processor designers to un-
derstand scaling bottlenecks in existing and emerging work-
loads in order to optimize application performance and de-
sign future hardware.

In this paper, we propose the speedup stack, which quan-
tifies the impact of the various scaling delimiters on multi-
threaded application speedup in a single stack. We describe
a mechanism for computing speedup stacks on a multi-core
processor, and we find speedup stacks to be accurate within
5.1% on average for sixteen-threaded applications. We
present several use cases: we discuss how speedup stacks
can be used to identify scaling bottlenecks, classify bench-
marks, optimize performance, and understand LLC perfor-
mance.

1 Introduction

Power efficiency and diminishing returns in improving
single-core performance have driven the computer indus-
try towards multi-core processors. Current general-purpose
processors employ a limited number of cores in the typical
range of 4 to 8 cores, see for example Intel Nehalem, Intel
Westmere, IBM POWER7, AMD Bulldozer, etc. It is to be
expected that the number of cores will increase in the com-
ing years given the continuous transistor density improve-
ments predicted by Moore’s law, as exemplified by Intel’s
Many Integrated Core architecture with more than 50 cores
on a chip.

A major challenge with increasing core counts is the
ability to program multi-core and many-core systems. Al-
though parallel programming has been a challenge for many
years in the scientific computing community, given the re-
cent advent of multi-core and many-core processors, par-

16 /
14

=&—Dblackscholes /

12 ~@—facesim

cholesk /
10 Y

speedup
[ee]

i-ﬁﬁ,/// -

—

1 thread 2 threads 4 threads 8 threads 16 threads

Figure 1. Speedup as a function of the num-
ber of cores for blackscholes, facesim (both
PARSEC) and cholesky (SPLASH-2).

allel programming has become inevitable for mainstream
computing. One of the key needs to efficient programming
is to have the appropriate tools to analyze parallel perfor-
mance. In particular, a software developer needs analysis
tools to identify the performance scaling bottlenecks, not
only on current hardware but also on future hardware with
many more cores than are available today; likewise, com-
puter architects need analysis tools to understand the be-
havioral characteristics of existing and future workloads to
design and optimize future hardware.

Speedup curves which report speedup as a function of
the number cores, as exemplified in Figure 1, are often used
to understand scaling behavior of an application. Although
a speedup curve gives a high-level view on application scal-
ing behavior, it does not provide any insight with respect to
why an application does or does not scale. There are many
possible causes for poor scaling behavior, such as synchro-
nization, as well as interference in both shared on-chip re-
sources (e.g., last-level cache) and off-chip resources (e.g.,
main memory). Unfortunately, a speedup curve provides no
clue whatsoever why an application exhibits poor scaling
behavior.

In this paper, we propose the speedup stack which is a
novel representation that provides insight into an applica-
tion’s scaling behavior on multi-core hardware. The height

- max theoretical speedup

I imbalance

speedup

__-- spinning

__-- Yyielding

cache coherency

_______ parallelization overhead

_______ net negative interference

- D-_ actual speedup

h positive interference

negative interference. _

base speedup

Figure 2. lllustrative speedup stack.

of the speedup stack is defined as N with N the number
of cores or threads. The different components in a speedup
stack define the actual speedup plus a number of perfor-
mance delimiters: last-level cache (LLC) and memory in-
terference components represent both positive and negative
interference in the LLC and main memory; the spinning
component denotes time spent spinning on lock and bar-
rier variables; the yield component denotes performance de-
ficiency due to yielding on barriers and highly contended
lock variables; additional components are due to cache co-
herency, work imbalance and parallelization overhead. Fig-
ure 2 shows an example speedup stack. The intuition is that
the scaling delimiters, such as negative LLC and memory
interference, spinning and yielding, and their relative con-
tributions, are immediately clear from the speedup stack.
Optimizing the largest scaling delimiters is likely to yield
the largest speedup, hence, a speedup stack is an intuitive
and useful tool for both software and hardware optimiza-
tions.

Next to introducing the concept of the speedup stack, this
paper also describes a method for computing speedup stacks
from a single run, either in simulation software or real hard-
ware; the cost for a hardware implementation is limited to
1.1KB per core or 18KB for a 16-core CMP. Our exper-
imental results demonstrate the accuracy of the approach:
we achieve an average absolute error of 5.1% on 16-core
processors across a set of SPLASH-2, PARSEC and Ro-
dinia benchmarks. Finally, we describe several applications
for speedup stacks apart from the obvious application of an-
alyzing performance scaling bottlenecks. We use speedup
stacks to classify benchmarks based on their scaling bottle-
necks, we identify optimization opportunities, and we ana-
lyze LLC performance.

In summary, we make the following two major contribu-
tions in this paper:

e We introduce the speedup stack which is a novel repre-
sentation that quantifies the impact of various scaling
bottlenecks in multi-threaded workloads on multi-core

hardware. The concept of a speedup stack is broadly
applicable to multiprocessor, chip-multiprocessor and
various forms of multi-threading architectures.

e We extend a previously proposed per-thread cycle ac-
counting architecture [7] for computing speedup stacks
on chip-multiprocessors. The extensions include sup-
port for quantifying the impact of positive interference
in shared caches on multi-threaded application perfor-
mance along with support for quantifying the impact
of spinning and yielding. The overall accounting ar-
chitecture can be implemented in hardware.

2 Speedup stack

For explaining the key concept of a speedup stack, we
refer to Figure 3. To simplify the discussion we focus on
the parallelizable part of a program. Amdahl’s law already
explains the impact of the sequential part on parallel perfor-
mance, hence, we do not consider it further in the remainder
of the paper. If of interest, including the sequential part in
the speedup stack can easily be done.

We define T} as the execution time of (the parallelizable
part of) a program under single-threaded execution. The ex-
ecution time of the same program during multi-threaded ex-
ecution will (most likely) be shorter, say 7},. We now break
up the execution time of a thread during multi-threaded ex-
ecution in various cycle components; note that the total ex-
ecution time is identical for all threads under this break-
up. The idealized multi-threaded execution time, assuming
perfect parallelization, equals T /N with N the number of
threads or cores. Note we use the terms ‘thread’ and ‘core’
interchangeably as we assume chip-multiprocessors in this
paper, however, the concept of a speedup stack can also be
applied to shared-memory multiprocessors (SMP) as well
as simultaneous multi-threading (SMT) and other forms of
multi-threading.

Obviously, the idealized multi-threaded execution time
Ts/N is not achieved in practice, hence multi-threaded ex-
ecution time is typically larger, for a number of reasons.
Parallelizing an application incurs overhead in the form of
additional instructions being executed to communicate data
between threads, recompute data, etc. This is referred to as
parallelization overhead in the speedup stack. Other over-
head factors include spinning (active spinning on lock and
barrier variables), yielding (the operating system scheduling
out threads that are waiting on barriers or highly contended
locks), and imbalance (threads waiting for other threads to
finish their execution). Finally, there are interference effects
in the memory hierarchy, both positive and negative in both
the LLC and memory subsystem, as well as performance
penalties due to cache coherency. Positive interference ob-
viously offsets negative interference. In a rare case, posi-
tive interference could lead to superlinear speedups in case

(a) Single-threaded execution

single-threaded execution time Tg

(b) Multi-f;hreaded execution

per-thread execution time Tp

per-thrf‘ead execution time breakup:
idealized execution
time T/N :
//
I I I
//’ ‘\ \\ l‘ \\ ' \\\
parallelization overhead\‘ yieldi,ng \\negative interference
spinning | imbalance
cache coherency

: positive interference
N e

Figure 3. Breaking up per-thread performance
for computing speedup stacks.

negative interference as well as the other overhead factors
are small. Interference in a chip-multiprocessor is limited
to parts of the memory hierarchy; multi-threading architec-
tures (e.g., SMT) also incur interference in the processor
core, and hence an additional core interference component
would need to be considered for these architectures.

Having broken up multi-threaded execution time into
different cycle components for each thread, we revert to
speedup, which is defined as single-threaded execution time
divided by multi-threaded execution time:

S == (1)

The way we build up a speedup stack is to profile a multi-
threaded execution, compute the aforementioned cycle
components for each thread, and estimate single-threaded
execution time from them. How we define and compute
the cycle components will be explained extensively later on
in the paper. The way we estimate single-threaded execu-
tion time is essentially the reverse process of what we just
explained considering Figure 3. We estimate the various
cycle components during multi-threaded execution, and we
substract these cycle components from the measured execu-
tion time. This yields the fraction single-threaded execution
time TZ for each thread. Summing these fractions TZ then
provides an estimate for the total single-threaded execution
time TS:

N N
Ts:ZTi:Z Tp*ZOi,ijPi))
) i J

with O; ; overhead component j (negative interference,
spinning, yielding, imbalance, cache coherency, paralleliza-

tion overhead) for thread ¢, and P; positive interference for
thread <.

Given the estimated single-threaded execution time, we
can now estimate the achieved speedup S:

7, yVi S (G- %0+)

S = it NG
1y T, T,)
We now reformulate the above formula to:
A N S04 VP
=N-— i) it 4
S Z T, + T, (4)

This formula immediately leads to the speedup stack by
showing the different terms in the above formula in a
stacked bar. The height of the bar equals the maximum
achievable speedup, namely N. The various terms de-
note the aggregate overhead components across all threads,
along with the aggregate positive interference component.

In summary, the speedup stack consists of the base
speedup plus a number of components, see also Figure 2.
Base speedup is defined as

N

. O,

Sbase =N — § ZJT, J; (5)
i p

and denotes the achieved speedup not taking into account
positive interference. The actual speedup then is the base
speedup plus the positive interference component. The
other components highlight overhead components due to
negative interference, cache coherency, parallelization over-
head, spinning, yielding and imbalance. Note that the net
negative interference is computed as the negative interfer-
ence component minus the positive interference component.

An intuitive interpretation of a speedup stack is that it
shows the reasons for sublinear scaling and hints towards
the expected performance benefit from reducing a specific
scaling bottleneck, i.e., the speedup gain if this component
is reduced to zero. This can guide programmers and archi-
tects to tackle those effects that have the largest impact on
multi-threaded multi-core performance.

The remainder of this paper is organized as follows. We
start with explaining the various overhead and interference
effects during multi-threaded execution in more detail in
Section 3. Section 4 then describes a method for computing
these effects. In Sections 5 and 6, we describe our setup and
validate the described method, respectively. We show some
interesting examples and applications in Section 7, we de-
scribe related work in Section 8, and we finally conclude in
Section 9.

3 Scaling delimiters

In this section, we describe the five major scaling delim-
iters of multi-threaded workloads on multi-core hardware:

resource sharing, cache coherency, synchronization, load
imbalance, and parallelization overhead. The next section
then describes how we account for each of these. In case an
application spawns more threads than there are hardware
thread contexts, scheduling also has an effect on perfor-
mance — this is out of the scope for this paper though.

3.1 Resource sharing

Multi-core architectures typically have some level of re-
source sharing. This ranges from the interconnection net-
work only (in case of an SMP); to main memory, memory
bandwidth and the LLC (in case of a chip-multiprocessor);
to core components (in case of an SMT core). Resource
sharing improves the utilization of a hardware component
and can improve overall system performance.

However, resource sharing may also have a negative im-
pact on per-thread performance. Focusing on a CMP with
a shared LLC and main memory, cache sharing may cause
threads to evict data of other threads, which means that the
latter will experience more misses than in isolated execu-
tion. On the other hand, cache sharing may also lead to
positive interference, i.e., one thread bringing data into the
shared cache that is later accessed by other threads.

Sharing main memory implies that accesses from one
thread may be delayed by accesses from other threads, in
a number of ways. If the bus between the processor and
main memory is occupied by one thread, other threads have
to wait. Similarly, when a memory bank is occupied by one
thread, other threads cannot access that same bank in the
same cycle. If the memory has an open-page policy, it may
occur that a thread opens another page between two con-
secutive accesses to the same page of another thread. The
last access of the latter thread now encounters another open
page, which means it incurs an extra penalty of writing the
current page back and reopening the original page.

3.2 Cache coherency

Cache coherency ensures that private caches (e.g., the
L1 caches in a CMP) are consistent with respect to shared
data. Cache coherency introduces extra traffic on the bus
or interconnection network, and causes additional misses
when local cache lines that are invalidated through upgrades
by other cores, are re-referenced later. Unnecessary cache
coherency traffic may result from false sharing.

3.3 Synchronization

The two most commonly used synchronization primi-
tives are locks and barriers. Locks are typically used to de-
fine critical sections to guarantee atomicity when modifying
shared data. Critical sections do not impose a particular or-
dering of execution, but they prevent threads from reading
and modifying the same data concurrently. An alternative
to using locks for guaranteeing atomicity in critical sections

is transactional memory. A barrier on the other hand, im-
poses ordering and denotes a point in the execution beyond
which a thread is only allowed to go after all other threads
have reached that point. The result of a barrier is that the
execution of a thread is halted until all threads have reached
the barrier. A barrier can be shared across all threads, or
between a subset of the threads.

3.4 Load imbalance

Load imbalance means that one or a few threads need
(substantially) more time to execute than the other threads,
which puts a limit on the achievable speedup, as the exe-
cution time of a multi-threaded application is determined
by the slowest thread. Load imbalance can be caused by
an uneven division of the work among the threads, but it
can also be a result of the impact of resource sharing, cache
coherency or synchronization. A thread that has an equal
amount of work compared to the other threads, but is de-
layed more through resource sharing, cache coherency or
synchronization can become the slowest thread, limiting an
application’s overall performance.

Synchronization effects through barriers could also lead
to load imbalance: an application should be developed such
that all threads reach the common barrier at the same time;
if not, load imbalance may cause some threads to wait for
other threads to reach the barrier. In this work, we classify
work imbalance at barriers as a synchronization effect.

3.5 Parallelization overhead

Parallelizing a program typically incurs some overhead.
Threads need to be spawned, locks need to be checked,
acquired and released, local calculations possibly need to
be done multiple times if it is too costly to communicate
their results via shared variables, etc. Because these extra
instructions incur computation time, they contribute to the
sublinear speedup effect.

Although parallelization overhead cannot be readily
measured in hardware, it is most visible to the program-
mer. A software developer has a good understanding of the
amount of parallelization overhead. In this paper, we do
not measure the impact of parallelization overhead though,
which implies that the estimated speedup is higher than the
actual speedup in most cases. However, we do argue in
Section 6 that this error correlates well with parallelization
overhead.

4 Cycle component accounting

As explained in Section 2, in order to compute a
speedup stack, we need to break up multi-threaded exe-
cution time into its various cycle components. We there-
fore extend a previously proposed per-thread cycle account-
ing method [7] to measure the impact of positive inter-

ference due to sharing, spinning and yielding. These ef-
fects only occur when executing a multi-threaded program
on a CMP, while the previously proposed mechanism tar-
gets measuring interference for multi-program workloads,
i.e., negative interference when co-executing independent
single-threaded programs. The next section briefly summa-
rizes the key features of the previously proposed CMP per-
thread cycle accounting technique. In subsequent sections,
we then describe how we quantify the impact of positive in-
terference in the LLC, spinning, yielding, cache coherency,
and load imbalance.

4.1 Negative interference

We use the per-thread cycle accounting architecture by
Eyerman et al. [7] for quantifying negative interference ef-
fects due to sharing in the LLC and main memory subsys-
tem. Inter-thread misses, i.e., misses due to sharing in the
LLC, are detected using auxiliary tag directories (ATDs).
There is an ATD for each core, and its goal is to quantify the
number of additional misses due to sharing the LLC against
a private LLC for each core (of the same size as the shared
LLC). The ATD has as many ways as the shared LLC and
keeps track of the tags and status bits for each cache line.
Misses in the LLC that hit in the ATD are classified as inter-
thread misses (negative interference). To reduce the hard-
ware cost of the ATDs, only a few sets are monitored in the
LLC. To estimate the total penalty of inter-thread misses,
the penalty of the sampled inter-thread misses is extrapo-
lated by multiplying it with the sampling factor.

Negative interference in the memory subsystem occurs
due to memory bus, memory bank and open page conflicts.
Interference in the bus and at the memory bank level is mea-
sured as follows: if a memory access is ready to access the
bus or a specific memory bank, and the bus or bank is occu-
pied by a memory access of another core, then the waiting
time until the bus or bank is free is accounted as interference
cycles. For measuring interference due to closed pages by
other threads, an open row array (ORA) is added per core.
The ORA keeps track of the pages opened by the given core
only. If a memory access of a core encounters a closed page
(i.e., its data is not in the current open page), and the ORA
indicates this core opened the page most recently, then there
is negative interference. The cost of writing back the page,
and opening a new page is accounted for as interference cy-
cles. In order to model overlap effects in an out-of-order
processor, we only account interference cycles in case a
miss blocks the ROB head and causes the ROB to fill up.

4.2 Positive interference

This previously proposed cycle accounting architecture
accounts for negative interference only when running multi-
program workloads. Multi-threaded workloads on the other
hand also exhibit positive interference as threads share data.

This implies that one thread can load data into the shared
LLC that can possibly be reused by other threads. This
means that the other threads will experience a hit instead of
a miss in case of a private LLC. This sharing effect thus has
a positive impact on performance and should be measured
by the cycle accounting infrastructure.

We refer to an LLC hit as an inter-thread hit if the thread
accesses data that was previously brought into the shared
LLC by another thread. An inter-thread hit can be detected
using the aforementioned ATDs: a hit in the shared LLC
that results in a miss in the private ATD, is classified as an
inter-thread hit. Interestingly, identifying inter-thread hits
does not incur additional hardware state over the per-thread
cycle accounting described in the previous section.

To quantify the impact of inter-thread hits on perfor-
mance, we need to estimate the penalty an access would
have seen if it were a miss. We cannot use an extrapolation
technique here, because there is no penalty, hence we can-
not measure it. Instead, we use an interpolation approach:
we take the total number of cycles a core is stalled on an
LLC load miss, and divide that by the number of LLC load
misses. This yields the average miss penalty. Then we take
the number of sampled inter-thread hits, multiply it with
the sampling factor (total number of LLC accesses divided
by the number of sampled ATD accesses) to get the esti-
mated total number of inter-thread hits. We then multiply
this number with the average miss penalty to obtain an esti-
mate for the total positive interference.

4.3 Spinning

Spinning happens when a thread wants to acquire a lock
to enter a critical section, but the lock is in use by another
thread. Similarly, spinning may happen on a barrier. In that
case, the thread enters a spin loop and constantly checks
the lock until it is released. This implies that the time a
thread spends in a spinning loop should be accounted as
interference cycles.

To detect spinning and account for its interference cy-
cles, we implemented and evaluated two spinning detection
mechanisms that have been proposed in literature. Li et
al. [11] propose a mechanism where all backward branches
are monitored and considered as possible spinning loop
branches. If the processor state is unchanged since the last
occurrence of the same branch, then the loop is considered
a spinning loop. Processor state is tracked using a com-
pact representation to represent register state changes, and
when a (non-silent) store occurs, processor state is assumed
altered. By keeping a timestamp at the occurrence of back-
ward branches, and subtracting this timestamp from the cur-
rent time (when the same branch is executed and processor
state is unchanged), one can quantify the time spent in spin
loops.

A second mechanism, proposed by Tian et al. [14], de-

tects spinning by monitoring loads as a spin loop contains at
least one load (to check the lock status). If a load instruction
loads the same data more than a given number of times (de-
termined by a threshold), it is marked as possibly belonging
to a spinning loop. If at some point in time, a marked load
loads different data, then it is checked whether the new data
was written by another core (using cache coherence infor-
mation). If so, it was a spinning loop. Again, by keeping
a timestamp at the first occurrence of a load, the total spin-
ning time can be measured. Tian et al. implemented this
technique in software, but it could also be done in hardware.
Because the Tian et al. mechanism is simpler to implement
(only keeping track of loads, no processor state monitoring),
we consider this method for quantifying spinning overhead.

This discussion assumed lock-based critical sections. In
the case of transactional memory, one could measure the
execution time of a transaction, and when it is rolled back
because of a conflict, the time spent in the transaction is
added as a synchronization penalty.

4.4 Yielding

Spinning consumes resources despite of the fact that the
thread does not make forward progress. Synchronization
libraries are therefore optimized to avoid spinning when a
long waiting time is to be expected. Instead of spinning, the
threads trying to aquire the lock or barrier are scheduled out,
and are awoken when the synchronization condition is met.
Like that, the operating system can schedule other threads
on the core, or shut down a core if there are no available
threads. Since this is also a form of synchronization penalty,
we also measure the time a thread is scheduled out. This can
be done in a straightforward way in the operating system. In
this paper, we refer to this effect as yielding.

4.5 Cache coherency

As previously discussed, cache coherency affects multi-
threaded performance by invalidating local cache lines in
private caches, which in its turn may induce additional L1
cache misses. However, a balanced out-of-order processor
core can hide (most) L1 data cache misses very well [10],
hence we do not account for cache coherency misses in this
paper. This may introduce error in case a workload suffers
from a large number of L1 data cache misses along with
long chains of dependent instructions which would prevent
the out-of-order core from hiding their performance impact.
However, in case L1 misses do incur a penalty (e.g., in
an in-order architecture), coherency misses can be detected
by noticing that invalidation by the coherency mechanism
causes a cache line to be invalid without being (immedi-
ately) replaced by another cache line. Also, in case of an
invalidation, usually only the status bits are adapted, while
the tag remains in the tag array. If a miss occurs, but there is

a hit in the tag array and the status is invalid, we can assume
that this is most likely a coherency miss.

4.6 Load imbalance

The load imbalance component for a thread is computed
as follows. Knowing the execution time of the slowest
thread, we add a load imbalance component to each of the
other threads such that the sum of all the cycle components
for each thread equals the execution time of the slowest
thread. This accounts for the load imbalance at the end of
the (parallel part of the) program.

Imbalance at barriers is accounted as synchronization,
either through spinning or yielding, as described above. The
reason is that it is impossible for the cycle accounting archi-
tecture when implemented in hardware to distinguish lock
spinning from barrier spinning (or yielding). This problem
can be solved though by computing speedup stacks for each
region between consecutive barriers; the imbalance before
each barrier (to be computed alike the load imbalance at the
end of the program as described above) then quantifies bar-
rier overhead.

4.7 Hardware cost

The total hardware cost for implementing the cycle com-
ponent accounting architecture is limited. The accounting
for computing both negative and positive interference in
shared resources incurs a hardware cost of 952 bytes per
core, see also [7]. The accounting for spinning overhead
using the Tian et al. [14] approach incurs a load table: as-
suming a spinning loop contains at most 8 loads, 8 entries
are needed in the table, containing the load PC, the ad-
dress, the loaded data, a mark bit and a timestamp, which
amounts to 217 bytes per core (assuming 64 bit addresses
and data). The total hardware cost is therefore 1.1KB per
core, or 18KB in total for a 16-core CMP.

The cycle component accounting architecture imple-
mented in hardware provides raw cycle counts that are then
processed in software. For example, for computing posi-
tive interference, the cycle accounting hardware architec-
ture computes the total number of cycles a core is stalled
on an LLC load miss plus the number of LLC load misses;
system software then computes the average penalty per miss
from these raw event counts and performs the interpolation
as previously explained. This way, hardware complexity is
limited and the proposed accounting architecture is feasible
to implement in hardware.

5 Methodology

We implemented the cycle accounting architecture in
the gem5 simulator assuming the Alpha ISA [3]. Further,
we simulate a set of multi-threaded benchmarks from the
SPLASH-2 [15], PARSEC [2] and Rodinia [4] benchmark

suites that we were able to run in our simulation environ-
ment. All benchmarks were compiled using GCC version
4.3.2 with the —O3 optimization level. Results are gath-
ered from the parallel fraction of the benchmarks only. We
simulated all benchmarks for 1, 2, 4, 8 and 16 threads, and
we assume as many threads as there are cores, unless men-
tioned otherwise.

The simulated processor is a CMP consisting of four-
wide superscalar out-of-order cores. L1 caches are private
(32KB L1 I-cache and 64KB L1 D-cache), and the shared
L2 cache is 2MB in size and is the last-level cache (LLC)
— the technique proposed in this paper can be trivially ex-
tended to architectures with private L2 caches and a shared
L3 LLC. All cores share the memory bus and the memory
subsystem with 8 memory banks.

6 Validation

Validating an implementation for computing speedup
stacks is challenging, because it is hard, if at all possible,
to isolate each of the stack contributors. Nevertheless, we
can evaluate what the accuracy is of the estimated speedup
S (Formula 3) versus the actual speedup .S (Formula 1). We
define error as

Error = %, (6)
with IV the number of cores/threads. The average absolute
error is 3.0%, 3.4%, 2.8% and 5.1%, for 2, 4, 8 and 16
threads, respectively.

Figure 4 shows the actual speedup against the esti-
mated speedup for 2, 4, 8 and 16 threads/cores. Accu-
racy is fairly good: cycle component accounting identi-
fies the benchmarks that scale well versus the benchmarks
that do not, and more importantly, the method fairly ac-
curately identifies the degree of scaling. For some bench-
marks through, the estimated speedup is off, see for exam-
ple fluidanimate medium(22.0%), swaptions small
(21.3%), 1u.ncont (16.2%) and srad (14.8%). The rea-
son for these errors are multifold. For one, as mentioned
before, the proposed method does not account for paral-
lelization overhead. Computing the increase in dynamic in-
struction count for a multi-threaded execution over single-
threaded execution, and subtracting the number of instruc-
tions due to spinning, is a measure for the amount of par-
allelization overhead. We found parallelization overhead to
be fairly high for swaptions small (26% more instruc-
tions) and fluidanimate medium (18% more instruc-
tions). Other possible reasons for the error are inaccuracies
for estimating the impact of positive and negative interfer-
ence (cf. interpolation and extrapolation); inaccuracies for
computing spinning overhead as it is based on some thresh-
old; not taking into account the impact of cache coherency.

7 Applications

Having obtained confidence in the accuracy of the
speedup stacks, we now explore a number of applications to
illustrate their usefulness for performing performance anal-
yses and workload characterization studies, as well as for
driving hardware and software optimizations.

7.1 Identifying scaling bottlenecks

Our first application is to identify scaling bottlenecks
in multi-threaded applications through visual inspection of
the speedup stacks. Figure 5 shows speedup stacks for the
blackscholes, facesim and cholesky benchmarks for
2 up to 16 threads/cores; note that Figure 1 in the intro-
duction of the paper showed speedup curves for the same
set of benchmarks. The black bottom component represents
the base speedup, i.e., the speedup without positive inter-
ference effects, or the number of threads minus all negative
interference components. The dark gray component on top
of it (if present) represents the positive LLC interference
component, hence the actual speedup is the sum of the dark
gray and black components. The white component is the
net negative interference LLC sharing component, i.e., the
negative LLC sharing component minus the positive LLC
sharing component. In other words, the negative LLC in-
terference component equals the sum of the dark gray and
white components. If all negative cache sharing could be
removed, then the speedup would increase with an amount
equal to the negative cache sharing component, which is
the sum of the dark gray and white components. The other
components represent interference in the memory subsys-
tem, spinning and yielding. The speedup stacks in Figure 5
do not show an imbalance component: as we measure the
stacks over the entire parallel fraction of the program (i.e.,
between the divergence and convergence of the threads), the
imbalance component is zero or nearly so, hence it is not
visible.

As was apparent from the speedup curves in Figure 1,
blackscholes shows almost perfect scaling; there are
no significant scaling bottlenecks as clearly observed from
the speedup stacks in Figure 5. Figure 1 also showed
that speedup scales poorly with the number of threads and
cores for facesim and cholesky. Although their speedup
curves look similar and both benchmarks achieve compara-
ble speedups, the speedup stacks shown in Figure 5 reveal
that the reason for the limited speedups differs across the
two benchmarks. For facesim, the main scaling delim-
iters are yielding, negative LL.C interference and interfer-
ence in the memory subsystem. In contrast, spinning is the
major scaling bottleneck for cholesky, followed by yield-
ing and memory interference. cholesky also has a fairly
large positive sharing component (the largest, as we will see
in Section 7.3), but its impact is completely compensated by
negative interference in the shared cache.

14 = actual
12 —estimated
210
=}
T 8 [I
S 6 7 7 / 7 | 7 [[
4
2
N N NN NN N O W@ & D O e 6
@ & O (@ @ 9‘(@ @ ((\o @ 6"‘(\6 & 66\ é\)é\ é\@ 6\"«\ 6"«\ 6°<(\) '&‘ 000 (\oox\ &6\ & Q\\'b & RO A @
9 \(\‘o 0‘?’\96\9 e"’\‘(\&e“ké\\(\ \\0(\ eﬁ' SRS g 90((\ N A \‘\ ,b\e‘ N «©
o) > Q Q \ G S N &‘ @ Q& R
St 5o S ®
0 ‘0\ N

Figure 4. Actual speedup and estimated speedup for all benchmarks for 2, 4, 8 and 16 threads.

16
14 Byielding
12 o
@spinning
= 10
3
§ 8 1 B negative memory interference
0 6 -
4 Onet negative LLC interference
2 b " .
B positive LLC interference
O 4
2 4 8 16 2 4 8 2 4 8 16
threads | threads | threads | threads | threads | threads | threads | threads | threads | threads | threads | threads mbase speedup
blackscholes facesim cholesky

Figure 5. Speedup stacks as a function of the nhumber of threads for blackscholes, facesim and

cholesky.

These examples clearly show the value of speedup
stacks, as they reveal the major scaling bottlenecks, which
vary across programs, even if the actual speedups are com-
parable. Moreover, identifying these scaling bottlenecks
without speedup stacks would be challenging. Guided by
the speedup stacks, programmers can try to reduce synchro-
nization overhead if spinning or yielding is large, for exam-
ple by using finer grained locks and smaller critical sections.
If negative interference in the LLC or main memory is a ma-
jor component for several important applications according
to the speedup stacks, processor designers can put more re-
sources towards avoiding negative interference, for example
through novel cache partitioning algorithms.

7.2 Benchmark classification

Having obtained speedup stacks for a large number of
benchmarks, one can classify the benchmarks according to
their scaling behavior. Figure 6 shows such a schematic
representation for all the benchmarks considered in this
study based on the speedup stacks for 16-threaded execu-
tion. This tree-like representation is built up as follows.
Going from left to right, we first classify the benchmarks

according to their scaling behavior. Good scaling behav-
ior means a speedup of at least 10x for 16 threads, while
poor scaling benchmarks have a speedup of less than 5x.
The in-between benchmarks are classified as moderate. The
next bifurcation in the tree is based on the largest scal-
ing delimiter (i.e., the largest component in the speedup
stack). It shows the main scaling delimiters for each of
the benchmarks that belong to a certain scaling category.
The type of the component always appears on top of the
line. If there is no component on top of the line, then there
is no considerable component that limits scaling (e.g., for
blackscholes, as discussed before). The following two
bifurcations reflect the second and third largest scaling bot-
tlenecks. Again, if there is no component name on top of
the line, then all remaining components are negligible. The
fifth column lists the names of the benchmarks, followed by
the benchmark suite they belong to and their actual speedup
number.

An insightful way for reading the tree graph in Figure 6,
is to read the graph from right to left. To find the character-
istics of a specific benchmark, locate the benchmark at the
right handside of the figure. Then follow the first line that

scaling 1st comp 2nd comp 3rd comp benchmark suite speedup
blackscholes parsec_medium 15.94
blackscholes parsec_small 15.71
memory yielding radix splash2 11.60
swaptions parsec_medium 12.99
good yielding heartwall rodinia 10.39
memory yielding cache srad rodinia 5.20
spinning yielding memory cholesky splash2 5.02
lud rodinia 5.77
water-nsquared splash2 5.77
fluidanimate parsec_medium 5.71
lu.ncont splash2 5.53
lu.cont splash2 5.79
facesim parsec_medium 5.50
cache memory facesim parsec_small 5.46
fft splash2 9.43
canneal parsec_medium 7.61
canneal parsec_small 6.93
moderate yielding memory bfs rodinia 5.65
ferret parsec_medium 4.77
water-spatial splash2 4.57
dedup parsec_medium 4.12
fregmine parsec_small 4.09
fregmine parsec_medium 3.89
swaptions parsec_small 3.81
dedup parsec_small 3.56
bodytrack parsec_small 3.02
ferret parsec_small 2.94
poor yielding [memory cache needle rodinia 4.14

Figure 6. Tree graph showing main speedup delimiter components for each benchmark for 16 threads:
follow the first line underneath a benchmark from right to left to find its scaling behavior and its third,
second and first (from right to left) largest components.

is underneath this benchmark to the left to find out the main
scaling limiting components and its scaling category. For
example for facesim, the major scaling bottlenecks are, in
decreasing order, yielding, LLC interference and memory
interference, while achieving moderate scaling.

There are a number of interesting observations to be
made from this tree-based classification. First, only few
benchmarks scale well: 5 out of the 28 benchmarks have
a speedup of at least 10x for 16 threads. The other two
categories (moderate and poor scaling) contain approxi-
mately the same number of benchmarks, but by looking
at the speedup numbers, it is clear that even in the mod-
erate group, most of the benchmarks achieve a speedup
only slightly above 5x. The poorest performing bench-
mark (ferret) shows a speedup of less than 3x for 16
threads. It is also interesting to note that scaling behavior
typically improves with input size, see swaptions as an
extreme example (speedup increases from 3.8x to 13.0x
when the simmedium input is used compared to simsmall);
this illustrates the weak scaling behavior of this workload.

Interestingly, yielding seems to be the most significant
scaling delimiter. It is the largest component for 23 of the 28
benchmarks (see the second column from the left), and the
second largest component for 3 of the remaining 5 bench-
marks. For 13 benchmarks it is the only component with
a non-negligible value, which means that the only limiting
factor is the fact that only a few threads are active at a time.

In this case, the speedup number is an approximation of the
average number of active threads. This means that, although
there are 16 threads spawned, only a fraction of the threads
is active, and hence only a fraction of the cores are busy.
This suggests that these benchmarks do not need 16 cores;
hence, a number of cores that is slightly larger than their
speedup number might yield the same performance. This
insight is validated in Figure 7, which compares speedup
for the 16-threaded version of ferret run on 2, 4, 8 and
16 cores. It reveals that if there are 16 threads spawned,
performance saturates at 8 cores (the lower performance for
16 cores can be explained by the Linux scheduler being less
efficient when there are more cores). The graph also shows
the speedup when the number of threads equals the number
of cores, from which it follows that having more software
threads than hardware thread contexts (cores) leads to better
performance.

7.3 Understanding LLC performance

Sharing the LLC has two main advantages: cache space
is used more efficiently compared to private caches, and
shared data has to be fetched only once, and then it can be
used by all cores (positive interference). This comes at the
cost of negative interference (threads evicting each other’s
data). In this section, we investigate the impact of positive
versus negative interference.

Figure 8 shows the negative, positive and net interference

m # threads = # cores

m 16 threads

2 cores 4 cores 8 cores 16 cores

Figure 7. Speedup numbers for ferret as a
function of the number of cores. The num-
ber of threads equals the number of cores
(left bars) or equals 16 (right bars).

2.0

mneg cache interference
m pos cache interference

net interference

speedup stack component

lu.ncont needle

cholesky lu.cont canneal canneal bfs
small large

Figure 8. Negative, positive and net LLC in-
terference components.

components in the LLC assuming 16 cores; only the bench-
marks with a non-negligible positive interference compo-
nent are shown. For all benchmarks, the negative inter-
ference exceeds the positive interference, resulting in a
net component that has a negative impact on performance
(which is the white component in Figure 5).

However, as we enlarge the LLC, negative interference
should decrease (fewer capacity misses), while positive in-
terference should remain constant (since this is a result of
the characteristics of the program, not the hardware). This
is validated in Figure 9, where we show the same compo-
nents for cholesky for an LLC of 2MB (default), 4MB,
8MB and 16MB. Negative interference indeed decreases,
while positive interference remains approximately constant
as a function of cache size, resulting in a smaller net inter-
ference component, and even a negative one, which means
that the total impact of cache sharing is positive for perfor-
mance.

15

m neg cache interference

m pos cache interference

net interference

speedup stack component

2MB 4MB 8MB 16MB

Figure 9. Negative, positive and net interfer-
ence components for cholesky as a function
of LLC size.

8 Related work

There exist a number of tools for analyzing parallel per-
formance, see for example Intel’s VTune Amplifier XE! and
Rogue Wave/Acumem ThreadSpotter’. Intel’s VTune uses
hardware performance counters provided by the hardware.
Rogue Wave/Acumem ThreadSpotter samples a running ap-
plication to capture a fingerprint of its memory access be-
havior, and provides feedback to the user to address mem-
ory performance problems. The information provided by
ThreadSpotter is limited to cache miss ratios and similar ag-
gregate event counts, and does not provide speedup stacks.
Although these tools are powerful and can be used to iden-
tify performance bottlenecks, they are unable to provide a
speedup stack and quantify the relative contributions of the
various scaling delimiters.

CPI stacks [6] are frequently used for identifying per-
formance bottlenecks in single-threaded applications. Eye-
rman et al. [9] propose a cycle accounting architecture for
constructing CPI stacks on out-of-order processors which is
challenging to do given overlap effects among miss events
and useful computation. CPI stacks are widely used for
guiding software and hardware optimization. One could ar-
gue that the speedup stack is in the multi-threaded applica-
tion domain what the CPI stack is for single-threaded appli-
cations.

Per-thread cycle accounting, or identifying how much
co-executing threads affect each other’s performance, is an
important vehicle for achieving better levels of quality-of-
service and service-level agreements. Several groups have
been proposing schemes for per-thread cycle accounting,
see for example [5, 7, 8§, 12, 13, 16]. All of the proposals
focused on multi-program workloads of independent single-

Uhttp://software.intel. com/en-us/articles/intel-vtune-amplifier-xe/
Zhttp://www.roguewave.com/products/threadspotter.aspx

threaded applications, and none focused on multi-threaded
applications involving the performance impact of positive
interference and spinning/yielding.

Bhattacharjee and Martonosi [1] predict critical threads,
or threads that suffer from imbalance. The motivation is to
give more resources to critical threads so that they run faster,
offload tasks from critical threads to non-critical threads to
improve load balancing, etc. They determine thread critical-
ity by tracking and weighting the number of cache misses
at different levels in the memory hierarchy.

9 Conclusion

Analyzing parallel performance and identifying scaling
bottlenecks is key to optimize both software and hard-
ware. This paper proposed a novel representation called
the speedup stack which visualizes the achieved speedup
and the various scaling delimiters as a stacked bar. The
height of the speedup stack equals the number of threads,
and the stack components denote the scaling delimiters,
such as LLC and memory subsystem interference, spinning,
yielding, imbalance, cache coherency, etc. The intuition is
that the relative importance of the scaling delimiters is im-
mediately clear from the speedup stack, hence, it is a in-
sightful tool for driving both hardware and software opti-
mizations. The concept of a speedup stack is applicable
to the broad range of multi-threaded, multi-core and multi-
processor systems.

In addition to introducing speedup stacks, we also de-
scribed an implementation for computing speedup stacks
in hardware. Hardware cost is limited to 1.1KB per core
or a total of 18KB for a 16-core CMP. Accuracy is within
5.1% average absolute error across a broad set of SPLASH-
2, PARSEC and Rodinia benchmarks. Further, we demon-
strated the usage of speedup stacks for identifying scaling
bottlenecks, for classifying benchmarks based on their scal-
ing delimiters, and for understanding LLC performance.

Acknowledgements

We thank the anonymous reviewers for their construc-
tive and insightful feedback. Stijn Eyerman is sup-
ported through a postdoctoral fellowship by the Research
Foundation—Flanders (FWO). Additional support is pro-
vided by the FWO projects G.0255.08 and G.0179.10, the
UGent-BOF projects 01J14407 and 01204109, the ICT De-
partment of Ghent University, and the European Research
Council under the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) / ERC Grant agreement
no. 259295.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
(9]

(10]

(11]

[12]

[13]

(14]

[15]

[16]

A. Bhattacharjee and M. Martonosi. Thread criticality pre-
dictors for dynamic performance, power, and resource man-
agement in chip multiprocessors. In ISCA, pages 290-301,
June 2009.

C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: Characterization and architectural impli-
cations. In PACT, pages 72-81, Oct. 2008.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. The gemS5 simulator. Computer Ar-
chitecture News, 39:1-7, May 2011.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H.
Lee, and K. Skadron. Rodinia: A benchmark suite for het-
erogeneous computing. In ZISWC, pages 44-54, Oct. 2009.
E. Ebrahimi, C.J. Lee, O. Mutlu, and Y. N. Patt. Fairness via
source throttling: A configurable and high-performance fair-
ness substrate for multi-core memory systems. In ASPLOS,
pages 335-346, Mar. 2010.

P. G. Emma. Understanding some simple processor-
performance limits. IBM Journal of Research and Devel-
opment, 41(3):215-232, May 1997.

S. Eyerman, K. Du Bois, and L. Eeckhout. Per-thread cycle
accounting in multicore processors. Technical report, Ghent
University, 2011.

S. Eyerman and L. Eeckhout. Per-thread cycle accounting
in SMT processors. In ASPLOS, pages 133-144, Mar. 2009.
S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith.
A performance counter architecture for computing accurate
CPI components. In ASPLOS, pages 175-184, Oct. 2006.
S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith.
A mechanistic performance model for superscalar out-of-
order processors. ACM Transactions on Computer Systems
(TOCS), 27(2), May 2009.

T. Li, A.R. Lebeck, and D. J. Sorin. Spin detection hardware
for improved management of multithreaded systems. /EEE
Transactions on Parallel and Distributed Systems (TPDS),
17:508-521, June 2006.

C. Luque, M. Moreto, F. J. Cazorla, R. Gioiosa, A. Buyuk-
tosunoglu, and M. Valero. ITCA: Inter-task conflict-aware
CPU accounting for CMPs. In PACT, pages 203-213, Sept.
2009.

O. Mutlu and T. Moscibroda. Stall-time fair memory access
scheduling for chip multiprocessors. In MICRO, pages 146—
160, Dec. 2007.

C. Tian, V. Nagarajan, R. Gupta, and S. Tallam. Dynamic
recognition of synchronization operations for improved data
race detection. In Proceedings of the International Sympo-
sium on Software Testing and Analysis, pages 143—154, July
2008.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and method-
ological considerations. In ISCA, pages 24-36, June 1995.
X. Zhou, W. Chen, and W. Zheng. Cache sharing manage-
ment for performance fairness in chip multiprocessors. In
PACT, pages 384-393, Sept. 2009.

