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Abstract—While maintaining the coherency of private caches,
invalidation-based cache coherence protocols introduce cache
coherence misses. We address the problem of predicting the
number of cache coherence misses in the private cache of a
parallel application when running on a multicore system with an
invalidation-based cache coherence protocol. We propose three
new performance models (uniform, phased and symmetric) for
estimating the number of coherence misses from information
about inter-core data sharing patterns and the individual core’s
data reuse patterns. The inputs to the uniform and phased models
are the write frequency and reuse distance distribution of shared
data from different cores. This input can be obtained either from
profiling the target application on a single core or by analyzing
the data access pattern statically, and does not need a detailed
simulation of the pattern of interleaving accesses to shared data.
The output of the models is an estimated number of coherence
misses of the target application. The output can be combined
with the number of other kinds of misses to estimate the total
number of misses in each core’s private cache. This output can
also be used to guide program optimization to improve cache
performance. We evaluate our models with a set of benchmarks
from the PARSEC benchmark suite on real hardware.

I. INTRODUCTION

The cache system on modern multicore architectures typi-
cally consists of a shared last-level cache for multiple cores and
private cache(s) for each core, which are kept coherent by a
coherence protocol. For parallel applications in which several
cores access common shared data, the cache system affects
performance in many ways. On the one hand, the shared last-
level cache reduces the number of accesses to off-chip memory,
since data that is brought into the shared cache by one thread
can subsequently be accessed by other threads without going
to off-chip memory. On the other hand, shared data accessed
by several cores, must be moved between the private caches of
the corresponding cores, causing some overhead. Furthermore,
whenever a core modifies shared data, copies in other private
caches are invalidated; when those copies are later accessed
by their cores, this triggers a so-called coherence miss in the
private cache of that core, typically forcing the data to be
fetched from the last-level cache.

To illustrate how coherence misses can cause performance
downgrade, consider the ”Deduplication” stage of the dedup
benchmark in the PARSEC benchmark suite [1, version 3.0].
In this stage, a large set of data chunks are processed in parallel
by the threads. During the processing of each chunk, the
threads access a shared hash table with global data. Figure 1
shows how the number of misses in the private caches (both
L1 and L2) increases with the number of cores, for 1 to
8 threads (each thread is pinned to a separate core with

private L1 and L2 caches, and all cores, being on the same
socket, share a last-level cache). The average number of private
cache misses for each core increases by 34% when going
from 1 to 8 threads. The cache misses mainly come from
the critical section where the shared data is accessed. This
increase in the number of private cache misses is caused by
an increase in coherence misses, and causes the execution time
in the critical section that protects the shared data to increase
by 30%. The increased critical section time leads to further
performance-harming effects, including increased waiting time
at lock accesses. The end result is that the speedup obtained by
parallelizing the stage is far from linear. The actual measured
speedup for this stage is 4.72 with 8 threads. Without the
coherence misses, the execution time in the critical section
would not increase, avoiding the further performance-harming
effects. By a detailed calculation, one can conclude that the
speedup achieved without the coherence misses would be
around 7.5. This loss of speedup is purely caused by coherence
misses.
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Fig. 1: Private cache misses (L1 + L2) and speedup of the
Deduplication stage in dedup

The example shows that when parallelizing an application
onto several cores that share common data, it is important to
understand how the cache system affects the performance of
the application and to be able to predict the number of expected
cache misses of different forms. It furthermore shows that an
increase in coherence misses can be an important bottleneck
which must be considered, when deciding how to distribute
code and data over the cores. For instance, the cost of coher-
ence misses can be a reason to choose a parallelization that
minimizes data sharing between cores, even if this would incur
other overheads. The cost of coherence misses might also be
something to consider when parallelizing code in a compiler.
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For example, in the aforementioned dedup benchmark, we can
reduce the number of coherence misses by padding the shared
data’s data structure. The cost of coherence misses should also
be considered when predicting which speedup can be obtained
by parallelization.

Modeling and predicting coherence misses can of course
be done using detailed simulation. Such analysis can be very
costly for long-running parallel applications. For predicting
other types of cache misses than coherence misses, several
less expensive approaches have therefore been developed for
modeling cache performance. There are, e.g., approaches that
use sampling of native executions (e.g., [2], [3]) with overheads
of only a few 10%. This approach has also been extended to
model how separate applications compete for a shared cache
(e.g., [4]–[6]). However, to the best of our knowledge, there
is no work on modeling caches which can predict the number
or cost of coherence misses in multi-threaded applications.

In this paper, we present three models for modeling and
predicting coherence misses in parallel applications. They all
rely on input that can be obtained by low-overhead profiling
techniques, such as quick sampling techniques that capture
reuse distance information (e.g., [2], [3]). The input to the
first two models (the uniform and the phased model) are reuse
distance distributions and write frequencies by the different
threads to shared data. The first (uniform) model uses this data
to predict the number of coherence misses of the application.
Its precision relies on the assumption that accesses to shared
data by different threads occur uniformly and temporally un-
correlated. This assumption holds for applications that access
shared data in a uniform way, e.g., a common storage, lookup
table, or similar.

For applications that use synchronization to force a par-
ticular pattern of access to shared data, the assumption of
temporally uniform access to shared data does not hold.
The second (phased) model can cope with this problem by
dividing the execution into phases, and using as input the reuse
distance distributions and write frequencies for each phase.
Typically the boundary of a phase is marked by synchro-
nization primitives (conditional variables, barriers, etc). These
synchronization primitives are used to divide the execution.
The model is first applied in each phase of the execution.
Then we sum up the number of coherence misses in each
phase to obtain the total number of coherence misses in the
whole execution.

Our third (symmetric) model can use less detailed input
data than the two other ones. It assumes that the shared data of
a parallel application is accessed symmetrically and uniformly
by the threads. Under this assumption, it needs only the number
of private cache misses for two runs with a different number
of threads. The model predicts the expected number of private
cache misses for any number of threads.

We have implemented the uniform and phased models in
the PIN framework [7]. This implementation is not efficient
but is intended to evaluate our models. We expect that an
efficient implementation can be realized by low-overhead
sampling techniques. Given a target program, we first trace
the memory accesses by each thread. The number of cold
misses is estimated by counting the number of distinct cache

lines accessed. We used the conventional set stack distance to
pick out all the capacity and conflict misses. To calculate the
number of coherence misses, first we get the reuse distance
distribution and write frequency to shared data from the trace.
Then these parameters are fed to our model to get the number
of coherence misses. Finally, the numbers of all four kinds
of misses are combined to estimate the total number of cache
misses in the private cache.

We evaluate our models on a set of applications from
the PARSEC benchmark suite [1] on actual hardware. Since
current hardware performance counters do not distinguish co-
herence misses from the rest of the cache misses, we compare
the modeled and measured total number of cache misses in the
private cache. The average relative error for the uniform model
is 5.80%. The average relative error of the phased model is
8.02%. We evaluated the symmetric model on one benchmarks
(dedup), which gives an error rate of 5.4%.

Our proposed models provide a quantitative estimate of
the number of coherence misses. This information can be
used to optimize the program. If a program is likely to have
too many coherence misses, redesigning the data access and
sharing pattern may reduce the number of coherence misses.
The model can also be used to predict the number of private
cache misses with different cache sizes.

The rest of the paper is organized as follows: Section II
introduces the intended target multicore systems and describes
the different kinds of private cache misses on the target system.
Section III describes the assumptions, terms and notations used
throughput the paper. Section IV reviews the methods to model
cold, capacity and conflict misses. Section V presents our
cache coherence models in detail. Section VI discusses the
implementation of two of our proposed models (model uniform
and phased). Section VII shows the model evaluation results.
Section VIII discusses related work and compares it to this
work. Section IX concludes the paper.

II. CACHE MISS CATEGORIZATION

We consider a multicore system with a hierarchical cache
system: multiple cores share a last level cache and each core
has a private (possibly multi-leveled) cache. In the shared
cache, the sharing effect could be both constructive and
destructive. On the one hand, cores may bring in the shared
data, which reduces the number of cache misses for other
cores. On the other hand, cores may evict other cores’ data,
which increases the number of cache misses for other cores. In
a core’s private cache, other cores cannot bring in or directly
evict data. However, the shared data in one core’s private cache
can be invalidated due to another core’s write to it (assuming
an invalidation-based cache coherence protocol).

Modeling and predicting both the constructive and de-
structive sharing effects of cache sharing has been studied
previously [4]–[6]. However, we are not aware of any proposed
model for efficiently modeling and predicting the effect of
data sharing on private caches. In this section, we discuss the
cache misses in the private cache with invalidation-based cache
coherence protocols.

In a single-core system, there are three kinds of cache
misses according to Hill et al’s cache miss categorization [8]:
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compulsory misses (also known as cold misses), capacity
misses, and conflict misses. Cold misses occur when the data
is accessed for the first time. Both capacity misses and conflict
misses are triggered by data eviction. The eviction for capacity
misses is caused by limited cache capacity, while for conflict
misses it is caused by limited cache associativity.

In a multicore system, all cores still experience these
three kinds of cache misses. In addition, cores that share data
may also suffer from cache coherence misses (also known as
communication misses [2]). A cache coherence miss (from
now simply coherence miss) is caused by the invalidation of a
cache line by the cache coherence protocol. When the cache
line is subsequently accessed, it will result in a coherence miss.
Figure 2 illustrates how a coherence miss occurs. Core0 and
Core1 share a cache line X , Core0 accesses X at t1 and
accesses it again (reuse of X) at t2 (where t2 > t1). Between
these two accesses to X by Core0, another core, Core1,
writes to X at t (where t1 < t < t2). With an invalidation-
based cache coherence protocol, Core1’s write will cause an
invalidation of the cache line containing X in Core0’s private
cache. The invalidated cache line causes Core0’s reuse of X
at t2 to become a coherence miss.

Core0

Core0’s cache

Core1

. .

.

t1 t2

t

access X access X

write X

coherence miss

time

time

X X

time

invalidates X

installs X

Fig. 2: Cache coherence miss example

Note that if X is evicted from Core0’s private cache
between t1 and t2 because of a cache access by Core0, the
access at t2 will be a capacity or conflict miss instead of a
coherence miss. By convention, we classify such a miss as a
capacity miss, even if the cache line is invalidated by another
core before the evicting access by Core0. Thus, invalidations
of cache lines that would later anyway have been evicted for
capacity or conflict reasons do not give rise to coherence
misses. In other words, a necessary condition for being a
coherence miss is that without the invalidation, the next access
would have been a cache hit (in the private cache). This
convention is consistent with previous work [2].

III. NOTATIONS

In this section, we introduce the assumptions, terms and
notations used throughout this paper. We consider a multi-

threaded program (target program). We use i to index the cores
and threads. Each thread runs on a designated core (Threadi
runs on Corei). For a specific run with N threads of the target
application, the terms and notations used in our models are
shown in Table I.

Symbol Description
Overall parameters

N number of running threads of the target application
C private cache size of each core (in terms of the number of cache

lines)
L set of shared cache lines (of all cores) of the target application

Parameters of misses in the private cache
Mi(N) number of memory accesses by Corei, running with N threads
Mmiss

i (N) number of private cache misses by Corei, running with N threads
Mcold

i (N) number of cold misses of Corei, running with N threads
Mcap

i (N) number of capacity misses of Corei, running with N threads
Mconf

i (N) number of conflict misses of Corei, running with N threads
Mcoh

i (N) number of coherence misses by Corei, running with N threads
Mi,X(N) number of memory accesses to shared cache line X by Corei,

running with N threads

TABLE I: Table of notations

There are two kinds of notations we use in this paper: over-
all parameters (about the cache system and target application)
and cache misses. The overall parameters include the number
of running threads in the application, cache size and set of
shared cache lines. We use M to denote the number of cache
misses: Mcold

i (N), Mcap
i (N), Mconf

i (N) and Mcoh
i (N) for

the number of cold, capacity, conflict and coherence misses,
respectively.

The total number of misses in the private cache of Corei is
the sum of all four kinds of cache misses: cold misses, capacity
misses, conflict misses and coherence misses:

Mmiss
i (N) = Mcold

i (N) +Mcap
i (N) +Mconf

i (N) +Mcoh
i (N)

IV. MODELING COLD, CAPACITY, AND CONFLICT MISSES

In this section, we review existing methods to model and
predict the number of cold, capacity and conflict misses, which
will be used in our evaluation.

A. Modeling cold misses

A cold miss in the private cache of Corei is triggered
when a cache line is accessed for the first time by Corei.
In this paper, we therefore use the number of distinct cache
lines accessed by Corei as an estimate of Mcold

i (N). Note
that some of the accessed cache lines may have been brought
into the private cache by prefetching, and thus this estimate in
general overapproximates Mcold

i (N). However, we will still
use this estimate (in the evaluation part) since it is difficult to
estimate the effect of prefetching, and since cold misses are
not the focus of this paper.

B. Modeling capacity and conflict misses

Both capacity and conflict misses are caused by eviction of
cache lines. They differ in the cause. If a cache line is evicted
because the cache is full, it causes a capacity miss. The eviction
for conflict misses is due to the mapped set being full (in a
non-fully-associative cache).
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The number of capacity misses depends on a program’s
data locality, cache size and replacement policy. For a fully-
associative cache with the Least Recently Used (LRU) replace-
ment policy, stack distance analysis [9]–[11] is a common way
to model the number of capacity misses. The stack distance is

Core0

X Y Z Y Z Y Z Y Z X

stack distance 2

time

Fig. 3: Example memory access sequence: letters represent
cache lines

defined as the number of distinct cache lines accessed between
the reuse of a cache line. For example, given a memory access
sequence in Figure 3, the stack distance of the second access
to X is two since there are two distinct cache lines accesses
(Y and Z) in between the two accesses of X . In a fully-
associative cache with cache size C < 2, X would have
been evicted before it is reused, resulting in a capacity miss.
If C ≥ 2, the second access to X would be a capacity
hit. In a fully-associative cache with the LRU replacement
policy, the stack distance distribution can be estimated with
the reuse distance distribution [3]. The advantage is that reuse
distance distributions can be obtained efficiently by sampling,
even on native executions, whereas obtaining exact stack
distances requires exact recording of memory access sequences
( [?] proposes hardware support to collect the stack distance
efficiently).

Conflict misses can be modeled with set stack dis-
tance [12]. The set stack distance of a memory access is
the distinct number of cache lines accessed within the same
set between the reuse of the memory access. In the previous
example in Figure 3, assuming X and Y map to the same set,
the set stack distance of the second access to X would be one.
The sets are isolated and accesses to one set cannot evict data
from another set. If the set stack distance is bigger than the set
associativity, the memory access will result in a conflict miss.
In a non-fully-associative cache, the conflict misses contain
capacity misses. In the evaluation in Section VII, we adopt
set stack distance analysis to calculate the number of conflict
misses.

V. MODELING CACHE COHERENCE MISSES

So far we have discussed how to analyze the number
of cold misses, capacity misses and conflict misses in the
private cache. These three kinds of misses only depend on
the data locality of the memory access to the core and the
cache parameters (cache size, cache replacement policy and
set associativity). Given a memory access sequence and cache
parameters, the numbers of these misses are deterministic.
However, the number of coherence misses is non-deterministic,
since it depends on the pattern of interleaving accesses to
shared data between cores. One way to analyze the coherence
misses is to enumerate and model all possible interleavings,
which is time consuming. In this section, we describe our two

probabilistic models (uniform and phased) and a third model
(symmetric) for estimating the number of coherence misses.

The first two models (uniform and phased) are based on
the following reasoning. Assume that the target program is
running on N cores. Consider a particular core Corei and a
particular memory access x to a cache line X by Corei. It
follows from the description in Section II that in order for
the memory access x to be a coherence miss, the following
conditions must be satisfied:

1) x is not a cold miss, i.e., the access to X is a reuse.
2) x is not a capacity or conflict miss.
3) Corei shares cache line X with at least one other core,

which may write to X .
4) Another core performs a write access to X before the

access x, but after the previous access to X by Corei.

The access x has a well-defined reuse distance in the sequence
of memory accesses by Corei, which is defined as the number
of memory accesses between the last access to X by Corei
and the access x. For example, in Figure 4, the last access to

Corei

Corej

X Y Z Y Z Y Z Y Z X

memory access x

write X

dx = 8

invalidation window

time

time

Fig. 4: Coherence miss example: Corei and Corej share a
cache line X. Corei reuses X with reuse distances dx.

cache line X by Corei has reuse distance 8. Let dx denote
the reuse distance of access x. Between its previous access to
X and the access x, the core Corei leaves a window for other
cores to perform write accesses to X that invalidate Corei’s
copy of X . The reuse distance dx is a measure of the size of
this window. Note that the relevant measure of window length
is the reuse distance, not the stack distance, since it is not
relevant whether the accesses in the window are to different
cache lines or not.

Let us now consider all accesses to cache line X by Corei
with some fixed reuse distance d. Let P cap

i,d,X(N) denote the
probability that such an access (i.e., an access by Corei to
cache line X with reuse distance d) is a capacity or conflict
miss. Let P inv

i,d,X(N) denote the probability that another core
performs a write access to X before such an access, but after
the previous access to X by Corei. We can then compute the
probability that an access by Corei to cache line X with reuse
distance d is a coherence miss, denoted P coh

i,d,X(N), as

P coh
i,d,X(N) = P inv

i,d,X(N)(1− P cap
i,d,X(N)) (1)

The probability P cap
i,d,X(N) can be obtained by stack distance

analysis. As described in Section IV-B, it can also be efficiently
approximated from a reuse distance histogram that can be
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obtained by sampling native executions, using the technique
of [3].

Let Pi,d,X(N) denote the probability that when the ap-
plication executes on N cores, an access by Corei accesses
cache line X with reuse distance d. By summing over all
reuse distances, we can obtain the probability P coh

i,X (N) that
an access by Corei to cache line X is a coherence miss as

P coh
i,X (N) =

∞∑
d=1

Pi,d,X(N)P coh
i,d,X(N) (2)

Substituting P coh
i,d,X(N) by Eq. 1,

P coh
i,X (N) =

∞∑
d=1

Pi,d,X(N)P inv
i,d,X(N)(1− P cap

i,d,X(N)) (3)

Let Mi,X(N) denote the total number of memory accesses to
X by Corei (with N running threads), and let L be the set
of cache lines that are shared between cores. The expected
number of coherence misses for Corei is then

Ecoh
i (N) =

∑
X∈L

(Mi,X(N) · P coh
i,X (N)) (4)

Now the remaining problem is to calculate the probability
P inv
i,d,X(N) of an invalidating access by another core during the

reuse window. In this paper, we propose two models for this
calculation, model uniform and model phased. The uniform
model assumes that accesses by each thread to each data item
are spread uniformly throughout the execution. The phased
model works even without this restriction, by dividing the
execution of the program into phases, and considering accesses
in different phases separately.

A. The uniform model

This model assumes that we can approximate the accesses
of each thread as occurring uniformly throughout the ex-
ecution, and without correlation between threads. Such an
assumption is valid for applications that access and update
some common data in a way that is not tightly coordinated. To
calculate P inv

i,d,X(N), assume that a core Corej different from
Corei writes to cache line X with a frequency of Fwrite

j,i,X (N)
per memory access of Corei. This frequency shows the number
of write accesses to X by Corej for each memory access of
Corei. In many applications the frequency of memory accesses
is approximately equal for all cores, and Fwrite

j,i,X (N) does not
depend on i.

For a reuse distance d by Corei, the probability of Corej
not writing to X within a reuse window of length d is (1 −
Fwrite
j,i,X (N))d. Since the memory accesses of different cores are

assumed to be independent, the probability of at least one of
the cores writing to X within d is

P inv
i,d,X(N) = 1−

∏
j 6=i

(1− Fwrite
j,i,X (N))d (5)

By substituting for P inv
i,d,X(N) Eq. (3) and for P coh

i,X (N) in
Eq. (4), we obtain

Ecoh
i (N) =

∑
X∈L

(Mi,X(N) · P coh
i,X (N)) , (6)

where P coh
i,X (N)) is

∞∑
d=1

Pi,d,X(N)

(1−∏
j 6=i

(1− Fwrite
j,i,X (N))d)(1− P cap

i,d,X(N))

 (7)

B. The phased model

The uniform model assumes that all shared cache lines
are written uniformly by the cores throughout the execution.
This is not the case in all real applications. Some applications
show different patterns of shared data access in different
parts of the execution, or coordinate access to shared data
by synchronization. A change of phase is typically marked by
synchronization primitives (e.g., conditional variables, barriers,
etc). For example, the bodytrack benchmark in the PARSEC
benchmark suite has a producer-consumer structure. The mas-
ter threads (the main thread and the I/O thread) first generate
the shared data by writing to it: thereafter they signal the
worker threads (by signaling a conditional variable) to start
processing the shared data. Although a significant amount of
data is shared, the master and worker threads’ accesses to
shared data are separated by the signaling of the conditional
variable. Such a separation prevents interleaved accesses to
shared data by the master and worker threads. Without these
interleaved accesses, the master threads’ writes to the shared
data do not cause any coherence misses in the worker threads.

time

Sync point
phase1

master threads
generate
shared data

phase2

worker threads
process shared
data

Fig. 5: The division of phases for bodytrack

The phased model generalizes the uniform model to handle
programs with phase-dependent pattern of accesses to shared
cache lines. The phased model divides the execution into
phases, by letting synchronization primitives (conditional vari-
able, barriers, etc) determine that a new phase is entered. There
are two kinds of coherence misses with the phase division:
intra-phase coherence misses where the coherence miss is
caused by an invalidating write in the same phase as the two
accesses of the core that experiences the coherence miss, and
inter-phase coherence misses, where one of the accesses by
the core with coherence miss occurs in a different phase from
the invalidating write access (cf. Figure 6).

The intra-core coherence misses are analyzed using the
uniform model in each phase. Inter-core coherence misses are
analyzed by the phased model as follows. For each phase,
we keep track of which shared cache lines are written to by
each core. In addition, for each core we keep track of the
distance df between each phase boundary and the first access
to each cache line X , and symmetrically the distance dl from
the last access to each cache line X and the following phase
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boundary. The distribution of these distances are summarized
in the probabilities Pfirst

i,df ,X
(N) and P last

i,dl,X
(N), respectively,

for each df and dl.

For a target core Corei, and for all pairs of phases
phasefirst and phase last such that Corei does not access X
in the phases between phasefirst and phase last , the phased
model predicts (i) one coherence miss if X is written to by
another core in a phase between phasefirst and phase last , and
(ii) a coherence miss with probability

∑
df

∑
dl

P first
i,df ,X(N)P last

i,dl,X(N)

1−∏
j 6=i

(1− Fwrite
j,i,X (N))df+dl


if X is not written to by another core between phases
phasefirst or phase last . This formula gives the probability
for an invalidating access in either phasefirst or phase last .
For simplicity, we have assumed that Fwrite

j,i,X (N) is the same
in both phases, otherwise the formula must be refined to
consider two different frequencies in the obvious way. Since
the probability in the second case is typically small, and can
add at most one coherence miss, we often omit it in the
analysis.

Corei

Corej

time

time
phase1 phase2 phase3

access X

write X

access X

dl df

inter-phase coherence miss

Fig. 6: Inter-phase coherence miss, phases divided by
synchronization points

C. The symmetric model

For multi-threaded applications where threads access both
local and global data in a symmetric way, we propose our third
model, called the symmetric model. Applications to which this
model can apply include network packet processing, streaming
applications, etc. Due to the symmetry assumption, we can
avoid applying uniform or phased, which needs information
about reuse distance distributions and write frequencies to
shared data. The symmetric model, in that it assumes that all
threads can be treated symmetrically, needs less information
about the behavior of each thread.

We consider programs that process a large set of input data
items, which are evenly divided among threads. The threads
maintain some shared data structure (e.g. a hash table) in order
to manage the data items. All accesses by all threads to the
shared data locations are randomly chosen. Different accesses
(even by the same thread) are uncorrelated. All threads access
the shared data structure randomly and independently, i.e., the
threads have symmetric access patterns to the shared data.
Given these assumptions, the write frequency Fwrite

j,i,X (N) is

independent of j, i,X or N . Fwrite
j,i,X (N) can be obtained by

speculating the code or profiling one loop of the application.

To present our analysis, let us introduce the following
notations:

L is the size (number of cache lines) of the input
data to be processed. L only includes the part of
the input data not having false-sharing effects with
the shared data.

S is the size of shared data
kS is the total number of accesses to S by all threads

during the whole execution.

We make the following assumptions, which holds in typical
applications. The input data size is much larger than the size
of the shared data and cache size (L >> S and L >> C).

Let us describe how the symmetric model models the
different kinds of private cache misses.

Cold misses: When the application executes with only one
thread, it accesses L local data and S shared data. Thus, the
number of cold misses is M cold

1 (1) = L+S. When parallelized
with N threads, the assumption on symmetry makes sure the
input data is distributed evenly. Each thread processes 1

N of
the total input data but all threads access the shared data:
Mcold

i (N) = 1
N · L+ S. Assuming L >> S,

Mcold
i (N) ≈ 1

N
Mcold

1 (1) (8)

The point of this approximation is that Mcold
i (N) can be

expressed by N without knowing L or S.

Capacity and conflict misses: Let kL be all reuses to
L that are cache misses, which means the accessed cache line
have been evicted prior to the access. Since each access in kL is
a reuse of the non-shared data item, the eviction must be due to
the limited cache capacity, which makes the access a capacity
misses. Running with one thread, there are kL capacity misses
and with N threads, there are 1

N · kL misses for each thread
due to the symmetry assumption.

The shared data may be reused. Let r be the miss ratio in
the private cache for the shared data running with one thread.
When parallelized to N threads, due to the symmetry, each
core has the same cache size and each thread accesses both
the local and shared data in the same pattern as in the one-core
case. Thus the miss ratio r does not change with the number
of threads. Therefore the number of capacity misses for the
shared data is kS · r for the one-thread case and 1

N · kS · r for
each thread in the N -thread case. To sum up, the total number
of capacity misses is kL + kS · r and 1

N · kL + 1
N · kS · r for

one thread and N threads respectively. Thus we have

M cap
i (N) =

1

N
M cap

i (1) (9)

Similarly for the conflict misses:

M conf
i (N) =

1

N
M conf

i (1) (10)
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Coherence misses: To convert a Corei’s potential cache
hit into a coherence miss, the thread on a foreign core needs
to write to the shared data before its reuse by Corei.

We first consider the case of Fwrite
j,i,X (N) = 1, where each

access to the shared data is a write. For each thread, the
probability of the last write to the shared data not being the
same thread is 1 − 1

N . Then the probability of invalidating a
shared data item for each thread is simply Pinv(N) = 1− 1

N
in steady state.

Based on equations 8, 9 and 10, we can calculate the total
number of cache misses. In the one-thread run, there are only
cold, capacity and conflict misses:

Mmiss
1 (1) = Mcold

1 (1) +Mcap
1 (1) +Mconf

1 (1) (11)

If there are Mhit
1 (1) cache hits of shared data in the one-

thread case, the probability of converting each of them into a
coherence miss is Pinv(N). Thus we have

Mcoh
i (N) = Mhit

1 (1) · Pinv(N) (12)

and the total number of cache misses is the sum of the four
different kinds of misses. Putting equations (8), (9), (10), (12),
and (11) together, we get

Mmiss
i (N) ≈ 1

N
Mmiss

1 (1) +Mhit
1 (1) · (1− 1

N
) (13)

Then we measure the number of cache misses for one thread
and two threads to get Mmiss

i (2) and Mmiss
1 (1). We solve

equation (13) to get Mhit
1 (1).

With Mhit
1 (1) and Mmiss

1 (1) known, we now can predict
the number of private cache misses for any number of threads
with Eq. (13).

For the case where Fwrite
j,i,X (N) < 1, the calculation of

Pinv(N) becomes slightly more involved. We propose a tech-
nique for estimating 1 − Pinv(N) (i.e., the probability of an
access to the shared data not being a coherence miss) from a
recurrence equation, as follows.

Consider an arbitrary access to X by Corei. There are two
ways for the access not to be a coherence miss. Either

• The last access to X is by Corei; the probability for this
is 1

N , or
• The last access to X is by another core (the probability

for this is N−1
N ), but it was not a write (the probability

for this is 1 − Fwrite
j,i,X (N)). In addition, the last access

previous to this one is again not a write by a core different
from Corei; the probability for this is (by the assumption
about independent and uncorrelated accesses to X) the
same as the probability that the original access to X is
not a coherence miss.

The above characterization yields the following equation

1− Pinv(N) =
1

N
+

N − 1

N
(1− Fwrite

j,i,X (N))(1− Pinv(N)) (14)

Solving Eq. 14 gives

Pinv(N) =
Fwrite
j,i,X (N)(N − 1)

Fwrite
j,i,X (N)(N − 1) + 1

VI. IMPLEMENTATION

In this section, we describe how we have implemented our
models, for the purpose of evaluating the applicability and accuracy
of our models by comparing predictions obtained by the models
with measurements from executions on actual hardware. The goal
is to compare the modeled number of coherence misses in the
private cache with the measured number. However, it is difficult
to measure the number of coherence misses on actual hardware.
One way would be to count the number of invalidation messages
sent by the cache coherence protocol. However, not all invalidation
messages will trigger future coherence misses. Therefore, using the
number of invalidation messages as the number of coherence misses
would be very inaccurate. However, the total number of private cache
misses can be easily measured by reading the hardware performance
counters. To compare with the measured total number of cache misses,
we sum up the number of all four kinds of misses to estimate the
total number of cache misses. Then this estimated value is compared
with the measured one.

A. Tracing the target program

We used Intel’s PIN [7] tool to trace memory instructions.
As a tool that introduces heavy profiling overhead (base overhead
without any user-inserted instrumentation is 30% [13]), PIN does not
guarantee to keep the traced program’s thread interleaving as when
the program runs on real hardware. Luckily, our models do not rely
on capturing the exact pattern of interleaving of threads. It is even
sufficient to run the target application with PIN on a single core.

For each memory access, we record the memory address, thread
id, operation (either memory read or write), and a logical stamp
which increments by 1 with each memory access. The logical stamp
shows the relative position of this memory access in all the memory
accesses by the same thread. When a synchronization primitive
(pthread_cond_signal(), pthread_cond_broadcast()
or pthread_barrier()) is encountered, the logical stamps of
all threads are recorded. This is used to divide the whole execution
into phases for the phased model.

PIN records virtual addresses with the first few bits indicating the
tag and index of the cache line and the last few bits indicating the
offset in the cache line (Figure 7). In our target platform, each cache
line is 64B, meaning the last 6 bits of the virtual address is the offset
in the cache line. Truncating these bits gives an address identifying
the cache line of the virtual address. This allows us to account for
the coherence misses caused by both true and false sharing.

Tag Index Offset

Fig. 7: Segments of a virtual address

B. Extracting input to our models from a trace

By profiling the target program, we get a trace of the memory
accesses. Now we need to extract input to our models from this trace.
uniform and phased need the following inputs for each kind of cache
misses:

• Cold misses: the number of accessed cache lines
• Capacity and conflict misses: the set stack distance of all

memory accesses.
• Coherence misses: reuse distance distribution for all shared

cache lines, and other threads’ write frequencies to the shared
cache lines
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First, we generate a set of all the distinct cache lines accesses
by each core. By searching through all the sets, we find all the
shared cache lines. The number of cold misses can be estimated by
counting the number of distinct cache lines. The stack distance of
each memory access is measured by counting the number of distinct
memory accesses in the same set between the last and current access
to the same cache line. If the set stack distance is bigger than the
set associativity, the memory access is counted as a conflict miss.
Otherwise, if the accessed cache line is a shared cache line, we record
its reuse distance for the analysis for coherence misses.

To calculate the number of coherence misses for a target core
Corei, we need the reuse distance distribution of all shared cache
lines by Corei and the other core’s write frequency to all the shared
cache lines. We collect all reuse distance for all the shared cache lines
obtained from the previous step. Then we generate a reuse distance
histogram. Next, we get the frequency of other cores’ (other than
Corei) writes to X . For each Corej other than Corei, the frequency
of Corej writes to X is calculated as

Fwrite
j,i,X (N) =

# writes to X

# of total memory accesses of Corei

This frequency is a relative frequency of Corej to Corei where Corei

is our target core.

VII. EVALUATION OF OUR MODELS

A. Experiment setup

We evaluate our models on a 32-core system with 2.7GHz Intel
Xeon E5-4650 CPUs. There are 4 sockets with 8 cores on each socket.
The L2 cache is non-inclusive and non-exclusive of the L1 cache. A
cache line is 64B. The experiment machine implements a MESIF
coherence protocol [14].

Cache Specification
L1 32KB, private, 8-way
L2 256KB, private, 8-way
L3 20MB, shared among cores on the same socket

TABLE II: The cache hierarchy of the experiment machine

B. Obtaining reference cache misses

All the multi-threaded benchmarks run with each thread pinned to
a designated core. We read the hardware performance counter of each
core for L2 misses with the Performance Application Programming
(PAPI) library [15]. The performance counter starts right before a
thread is created and stops right after a thread finishes (The Pthread
library’s pthread_create() function was overridden to control
the counters). After collecting each core’s L2 cache miss count, we
take the average among all threads, which is used as a reference for
the number of cache misses in the private cache.

C. Benchmarks

To validate our model, we chose 7 benchmarks (blackscholes,
bodytrack, fluidanimate, streamcluster, raytrace, swaptions and
dedup) from the PARSEC 3.0 benchmark suite. 1 Table III shows the
input size and applied model for each benchmark. All benchmarks are
compiled with gcc version 4.7.2 and optimization level O3. We ran
all the benchmarks with 1− 8 thread(s), which utilizes all the cores
on one socket. For dedup, which implements the pipeline parallelism,
all threads in a parallel stage are assigned to the same socket.

1We excluded benchmarks that do not compile, have no input, incompatible
with the PIN framework and with no Pthread implementation.

benchmark input method
blackscholes 4, 096 options uniform

bodytrack 100 particles uniform, phased
fluidanimate 5, 000 particles uniform
streamcluster 128 input points uniform, phased

raytrace teapot.env uniform
swaptions 10, 000 swaptions uniform, phased

dedup 640MB random input data symmetric

TABLE III: Benchmarks and inputs

D. Results (all benchmarks except for dedup)

Figure 8 shows the evaluation results for the uniform and phased
models. Each vertical bar in the histogram represents the modeled
number of private cache misses. It is further divided into four kinds
of misses: capacity (including conflict) misses, cold misses, coherence
misses and inter-phase coherence misses. The reference dots are the
measured number of L2 misses. By comparing the number of different
cache misses as the number of cores increases, we can decide which
kind of miss is the scalability bottleneck for each benchmarks.

Benchmarks analyzed with the uniform model:
blackscholes and fluidanimate are analyzed with the uniform model.
These two benchmarks do not have phase-wise behaviors in accessing
the shared cache lines. The average relative error for uniform is 5.8%.
In blackscholes, the number of coherence misses increases with more
threads, which is due to the fact that the number of shared cache lines
fluctuates in a small range (between 642 and 730) regardless of the
number of threads. Sharing the same number of cache lines with more
threads will increase the number of coherence misses. This can be
shown in our model: the invalidation probability P inv

i,d,X(N) increases
if there are more foreign cores write to shared data according to
Eq. (5).

Benchmarks analyzed with both the uniform and phased mod-
els: bodytrack, streamcluster, raytrace and swaptions are analyzed
with the phased model. The run of streamcluster with one thread
does not have any coherence misses. Taking out this instance run,
the average relative error of all these benchmarks is 8.02%. The
phased model divides bodytrack’s whole execution into two phases,
where the master threads generate the shared data in phase1 and the
worker threads process the shared data in phase2. All the coherence
misses come from phase2 since the accesses to shared data from
phase1 do not interleave with the shared data accesses in phase2.
The number of capacity misses decreases with more threads. This
is because the amount of data for each thread decreases as there
are more threads sharing the data to process. For streamcluster, the
number of coherence misses dominates the total number of cache
misses. The inter-phase coherence misses contribute to a noticeable
part of the cache misses. This is due to the frequent barrier calls in
the benchmark (over 19, 000 barriers). Most shared variables are used
in several phases.

E. Applying the symmetric model to dedup

In this section, we take the dedup benchmark as an example to
show how to use the symmetric model to predict the coherence misses.
dedup implements pipeline parallelism (Fig. 3 in [16] shows the
structure). There are five stages in this benchmark. The first and last
stages are sequential and the other three stages are parallel. Adjacent
stages share buffer queue(s) (Q1-Q8). The first stage Fragment splits
the input data into coarse-grained chunks, then the FragmentRefine
stage divides these chunks into finer-grained chunks. The Dedupli-
cate stage processes the fine-grained chunks and inserts pointers to
them into a hashtable. Then the Compress stage compresses the
chunks. The last stage Reorder writes the compressed data into an
output file. Our analysis focuses on the Deduplicate stage.
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Fig. 8: Evaluation results

In the Deduplicate stage, all threads process their local data
chunks and share a hash table. Each thread executes the following
loop: 1) fetch a data chunk 2) generate a hash key for the data chunk
and 3) search the hash key in the hash table 4) if the key is not found,
insert the key into the hash table. There are some false-sharing effects
between the local data and the shared data.

By applying the symmetric model, we obtain the invalidation
probabilities for 1−8 threads, as shown in Table IV. Then we measure

# threads 1 2 3 4 5 6 7 8
inv prob 0 0.5 0.67 0.75 0.8 0.83 0.86 0.88

TABLE IV: Analyzed invalidation probability for
Deduplicate stage in dedup

the number of private cache misses for 1 and 2 threads, solve Eq. (13)
and use the equation to predict the number of private cache misses
for 3 − 8 threads (we can only evaluate the model with at most 8
threads since there are 8 cores on each socket). Figure 9 shows the
prediction results. The average relative error of the symmetric model
on dedup in predicting the number of L2 misses is 5.4%.

VIII. RELATED WORK

Stack distance: To quantify the data locality of a program,
Mattson et al [17] introduced the stack distance as a measure
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Fig. 9: Modeling the number of L2 misses for each loop of
the Deduplicate stage in dedup

to describe a program’s data locality. It was used later by other
researchers to analyze program locality [18]–[21].

In the multicore era, Chandra et al [4], Xu et al [5] and
Eklov et al [6] used the stack distance histogram to model cache
contention in the shared cache. While predicting the cache contention
effect accurately, none of these methods consider inter-core data
sharing. Jiang et al [11] introduced the concurrent reuse distance
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(CRD) to consider interleaved memory accesses by all cores. Wu
and Yeung [22] analyzed how the CRD changes with multiple
threads. Dilation, spreading and distortion effects are observed in
the CRD distribution compared to the non-concurrent reuse distance
distribution. This observation is used to predict the CRD distribution
with a number of threads.

Modeling coherence misses: So far the work taking coherence
misses into account has been sampling-based. Schuff et al [10]
presented a sampling-based approach to speed up detailed online
simulations. It keeps track of the stack distance profile of a multi-
threaded application and simulates the cache behavior with the profile.
It models both the shared and private caches without distinguishing
the kinds of cache misses. Each thread keeps a private stack and
the cache line invalidation is propagated to other threads at synchro-
nization points. Berg et al [2] also present a sample-based method
to analyze the data locality of a multi-threaded program. To capture
coherence misses, a cache line is monitored until it is reused by the
same core. During the monitoring, it maintains a writer list to catch
the foreign cores’ write to the cache line. On reuse by the same
core, a non-empty writer list means at least a core invalidated the
cache line, which makes the reuse a coherence miss. Both of the
sampling methods rely on capturing the exact thread interleavings.
Sampling-based approaches are sensitive to interference from other
processes. In addition, it cannot be used to model cache misses
for another hardware configuration (e.g., different cache size). Our
profiling approach only collects software-specific data, which makes
our profiling process insensitive to interference. Another advantage of
analytical-based approaches including ours is the ability to evaluate
performance in another system configuration. For example, our model
can be used to predict the number of cache misses with a different
cache size.

Optimization with inter-core data sharing: Zhang et al [23]
point out that the inter-core data reuse is not fully exploited by the
current on-chip cache hierarchy or the state-of-the-art optimizations.
An optimization scheme that balances the inter-core and intra-core
data reuse is proposed. Demetriades et al [24] propose a run-time
coherence miss prediction scheme. The scheme is based on the
observation that the coherence misses and synchronization points in
a program are usually correlated.

IX. CONCLUSION

In this paper, we proposed three new analytical models to analyze
cache coherence misses for a multi-threaded application on multicore.
The model builds on the observation that the occurrence of a coher-
ence miss is caused by a foreign write interleaving with the reuse of a
shared cache line. The model quantifies the cache coherence misses of
a core with the reuse distance distribution and the frequency of other
cores’ writes to the shared cache lines. The predicted cache coherence
misses can then be added to the cold misses and capacity misses
(calculated with existing methods) to model the total number of cache
misses in the private cache. The model we proposed can be used to
predict the private cache misses of a multi-threaded application for
different cache sizes and to guide program optimizations in order to
better utilize the private cache. We evaluated our models with a set
of benchmarks in the PARSEC benchmark suite.
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