
Modeling Cache Coherence Misses on Multicores

Xiaoyue Pan Bengt Jonsson
Department of Information Technology

Uppsala University
{xiaoyue.pan, bengt.jonsson}@it.uu.se

Abstract—While maintaining the coherency of private caches,
invalidation-based cache coherence protocols introduce cache
coherence misses. We address the problem of predicting the
number of cache coherence misses in the private cache of a
parallel application when running on a multicore system with an
invalidation-based cache coherence protocol. We propose three
new performance models (uniform, phased and symmetric) for
estimating the number of coherence misses from information
about inter-core data sharing patterns and the individual core’s
data reuse patterns. The inputs to the uniform and phased models
are the write frequency and reuse distance distribution of shared
data from different cores. This input can be obtained either from
profiling the target application on a single core or by analyzing
the data access pattern statically, and does not need a detailed
simulation of the pattern of interleaving accesses to shared data.
The output of the models is an estimated number of coherence
misses of the target application. The output can be combined
with the number of other kinds of misses to estimate the total
number of misses in each core’s private cache. This output can
also be used to guide program optimization to improve cache
performance. We evaluate our models with a set of benchmarks
from the PARSEC benchmark suite on real hardware.

I. INTRODUCTION

The cache system on modern multicore architectures typi-
cally consists of a shared last-level cache for multiple cores and
private cache(s) for each core, which are kept coherent by a
coherence protocol. For parallel applications in which several
cores access common shared data, the cache system affects
performance in many ways. On the one hand, the shared last-
level cache reduces the number of accesses to off-chip memory,
since data that is brought into the shared cache by one thread
can subsequently be accessed by other threads without going
to off-chip memory. On the other hand, shared data accessed
by several cores, must be moved between the private caches of
the corresponding cores, causing some overhead. Furthermore,
whenever a core modifies shared data, copies in other private
caches are invalidated; when those copies are later accessed
by their cores, this triggers a so-called coherence miss in the
private cache of that core, typically forcing the data to be
fetched from the last-level cache.

To illustrate how coherence misses can cause performance
downgrade, consider the ”Deduplication” stage of the dedup
benchmark in the PARSEC benchmark suite [1, version 3.0].
In this stage, a large set of data chunks are processed in parallel
by the threads. During the processing of each chunk, the
threads access a shared hash table with global data. Figure 1
shows how the number of misses in the private caches (both
L1 and L2) increases with the number of cores, for 1 to
8 threads (each thread is pinned to a separate core with

private L1 and L2 caches, and all cores, being on the same
socket, share a last-level cache). The average number of private
cache misses for each core increases by 34% when going
from 1 to 8 threads. The cache misses mainly come from
the critical section where the shared data is accessed. This
increase in the number of private cache misses is caused by
an increase in coherence misses, and causes the execution time
in the critical section that protects the shared data to increase
by 30%. The increased critical section time leads to further
performance-harming effects, including increased waiting time
at lock accesses. The end result is that the speedup obtained by
parallelizing the stage is far from linear. The actual measured
speedup for this stage is 4.72 with 8 threads. Without the
coherence misses, the execution time in the critical section
would not increase, avoiding the further performance-harming
effects. By a detailed calculation, one can conclude that the
speedup achieved without the coherence misses would be
around 7.5. This loss of speedup is purely caused by coherence
misses.

3400

3600

3800

4000

4200

4400

4600

4800

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

M
ea

su
re

d
pr

iv
at

e
ca

ch
e

m
is

se
s

(p
er

lo
op

)

M
ea

su
re

d
st

ag
e

sp
ee

du
p

Number of threads

private cache misses
Measured Speedup

Fig. 1: Private cache misses (L1 + L2) and speedup of the
Deduplication stage in dedup

The example shows that when parallelizing an application
onto several cores that share common data, it is important to
understand how the cache system affects the performance of
the application and to be able to predict the number of expected
cache misses of different forms. It furthermore shows that an
increase in coherence misses can be an important bottleneck
which must be considered, when deciding how to distribute
code and data over the cores. For instance, the cost of coher-
ence misses can be a reason to choose a parallelization that
minimizes data sharing between cores, even if this would incur
other overheads. The cost of coherence misses might also be
something to consider when parallelizing code in a compiler.

96978-1-4799-3606-9/14/$31.00 ©2014 IEEE

john
高亮

john
附注
基于这种失效性的cache一致性协议，带来了一个新的问题，就是cache一致性缺失的问题。

john
附注
通过本论文的方法能够给出一个并行的程序当执行在一个多核的系统上时，可以预估出造成的一致性缺失的次数。

john
高亮

john
附注
通过数据的共享pattern和每个核的自己的数据重用pattern

john
高亮

john
附注
静态分析，我们的定位就是分析不同的负载按照什么策略，放置在什么情况下好。

john
高亮

john
附注
缺失性事件中，有个cache miss的计数，而这个技术有个两个部分组成，一个是关于流水线上的自身程序所造成的cache一致性问题，另一个就是由于cache 一致性协议调用了写失效策略，增加了更多的cache miss次数，由此降低了性能。

john
高亮

john
高亮

john
高亮

john
高亮

john
高亮

john
附注
如果没有cache一致性，性能可能能够翻到7.5

john
高亮

john
附注
这个东西可以让编译编写人员，能够从cache一致性造成的cache miss的程度上来讨论开销问题，以此来觉得程序的并行度。

john
高亮

john
高亮

john
附注
这里就会有一个共享数据开销和缺失性访问的一个权衡。

For example, in the aforementioned dedup benchmark, we can
reduce the number of coherence misses by padding the shared
data’s data structure. The cost of coherence misses should also
be considered when predicting which speedup can be obtained
by parallelization.

Modeling and predicting coherence misses can of course
be done using detailed simulation. Such analysis can be very
costly for long-running parallel applications. For predicting
other types of cache misses than coherence misses, several
less expensive approaches have therefore been developed for
modeling cache performance. There are, e.g., approaches that
use sampling of native executions (e.g., [2], [3]) with overheads
of only a few 10%. This approach has also been extended to
model how separate applications compete for a shared cache
(e.g., [4]–[6]). However, to the best of our knowledge, there
is no work on modeling caches which can predict the number
or cost of coherence misses in multi-threaded applications.

In this paper, we present three models for modeling and
predicting coherence misses in parallel applications. They all
rely on input that can be obtained by low-overhead profiling
techniques, such as quick sampling techniques that capture
reuse distance information (e.g., [2], [3]). The input to the
first two models (the uniform and the phased model) are reuse
distance distributions and write frequencies by the different
threads to shared data. The first (uniform) model uses this data
to predict the number of coherence misses of the application.
Its precision relies on the assumption that accesses to shared
data by different threads occur uniformly and temporally un-
correlated. This assumption holds for applications that access
shared data in a uniform way, e.g., a common storage, lookup
table, or similar.

For applications that use synchronization to force a par-
ticular pattern of access to shared data, the assumption of
temporally uniform access to shared data does not hold.
The second (phased) model can cope with this problem by
dividing the execution into phases, and using as input the reuse
distance distributions and write frequencies for each phase.
Typically the boundary of a phase is marked by synchro-
nization primitives (conditional variables, barriers, etc). These
synchronization primitives are used to divide the execution.
The model is first applied in each phase of the execution.
Then we sum up the number of coherence misses in each
phase to obtain the total number of coherence misses in the
whole execution.

Our third (symmetric) model can use less detailed input
data than the two other ones. It assumes that the shared data of
a parallel application is accessed symmetrically and uniformly
by the threads. Under this assumption, it needs only the number
of private cache misses for two runs with a different number
of threads. The model predicts the expected number of private
cache misses for any number of threads.

We have implemented the uniform and phased models in
the PIN framework [7]. This implementation is not efficient
but is intended to evaluate our models. We expect that an
efficient implementation can be realized by low-overhead
sampling techniques. Given a target program, we first trace
the memory accesses by each thread. The number of cold
misses is estimated by counting the number of distinct cache

lines accessed. We used the conventional set stack distance to
pick out all the capacity and conflict misses. To calculate the
number of coherence misses, first we get the reuse distance
distribution and write frequency to shared data from the trace.
Then these parameters are fed to our model to get the number
of coherence misses. Finally, the numbers of all four kinds
of misses are combined to estimate the total number of cache
misses in the private cache.

We evaluate our models on a set of applications from
the PARSEC benchmark suite [1] on actual hardware. Since
current hardware performance counters do not distinguish co-
herence misses from the rest of the cache misses, we compare
the modeled and measured total number of cache misses in the
private cache. The average relative error for the uniform model
is 5.80%. The average relative error of the phased model is
8.02%. We evaluated the symmetric model on one benchmarks
(dedup), which gives an error rate of 5.4%.

Our proposed models provide a quantitative estimate of
the number of coherence misses. This information can be
used to optimize the program. If a program is likely to have
too many coherence misses, redesigning the data access and
sharing pattern may reduce the number of coherence misses.
The model can also be used to predict the number of private
cache misses with different cache sizes.

The rest of the paper is organized as follows: Section II
introduces the intended target multicore systems and describes
the different kinds of private cache misses on the target system.
Section III describes the assumptions, terms and notations used
throughput the paper. Section IV reviews the methods to model
cold, capacity and conflict misses. Section V presents our
cache coherence models in detail. Section VI discusses the
implementation of two of our proposed models (model uniform
and phased). Section VII shows the model evaluation results.
Section VIII discusses related work and compares it to this
work. Section IX concludes the paper.

II. CACHE MISS CATEGORIZATION

We consider a multicore system with a hierarchical cache
system: multiple cores share a last level cache and each core
has a private (possibly multi-leveled) cache. In the shared
cache, the sharing effect could be both constructive and
destructive. On the one hand, cores may bring in the shared
data, which reduces the number of cache misses for other
cores. On the other hand, cores may evict other cores’ data,
which increases the number of cache misses for other cores. In
a core’s private cache, other cores cannot bring in or directly
evict data. However, the shared data in one core’s private cache
can be invalidated due to another core’s write to it (assuming
an invalidation-based cache coherence protocol).

Modeling and predicting both the constructive and de-
structive sharing effects of cache sharing has been studied
previously [4]–[6]. However, we are not aware of any proposed
model for efficiently modeling and predicting the effect of
data sharing on private caches. In this section, we discuss the
cache misses in the private cache with invalidation-based cache
coherence protocols.

In a single-core system, there are three kinds of cache
misses according to Hill et al’s cache miss categorization [8]:

97

john
高亮

john
附注
也就是说他是第一家了这里不光是评估出了coherence miss还有cost。基于quick sample的方法，这个方法是用重用距离的方法。这个能算是解析模型吗?

john
高亮

john
高亮

john
附注
阶段性model，在PIN工具下。就目前的情况来看，这个东西是面向x86架构的。

john
高亮

john
附注
该论文主要的两个数据输入量，一个为数据写入频率，第二就是重用数据距离的分布，确实这两点已经作为了能够影响真实的性能的重要影响因子，我们是不是可以用这个因子来做一个经验模型呢？

john
高亮

john
高亮

john
附注
PIN就是编程框架。

john
高亮

john
高亮

john
附注
这个是影响仿真系统性能大约10%？

john
高亮

john
附注
对于首先两个模型，一个是重用距离，一个是针对相同数据的写入频率。

john
高亮

john
附注
其精度依赖于一个假设。针对相同数据访问发生都是统一的。而且是暂时不相关的。（这个暂时不相关的是什么意思？）

john
高亮

john
附注
对于那些需要等待某个同步信号来完成的访问共享数据访问，在第二种模型中。而在第一个模型中不同的两个线程针对同一个Cacheline访存是不相关的。

john
附注
正向的，逆向的方法都已经很多。这和10年的这个团队一直在做这个东西。

compulsory misses (also known as cold misses), capacity
misses, and conflict misses. Cold misses occur when the data
is accessed for the first time. Both capacity misses and conflict
misses are triggered by data eviction. The eviction for capacity
misses is caused by limited cache capacity, while for conflict
misses it is caused by limited cache associativity.

In a multicore system, all cores still experience these
three kinds of cache misses. In addition, cores that share data
may also suffer from cache coherence misses (also known as
communication misses [2]). A cache coherence miss (from
now simply coherence miss) is caused by the invalidation of a
cache line by the cache coherence protocol. When the cache
line is subsequently accessed, it will result in a coherence miss.
Figure 2 illustrates how a coherence miss occurs. Core0 and
Core1 share a cache line X , Core0 accesses X at t1 and
accesses it again (reuse of X) at t2 (where t2 > t1). Between
these two accesses to X by Core0, another core, Core1,
writes to X at t (where t1 < t < t2). With an invalidation-
based cache coherence protocol, Core1’s write will cause an
invalidation of the cache line containing X in Core0’s private
cache. The invalidated cache line causes Core0’s reuse of X
at t2 to become a coherence miss.

Core0

Core0’s cache

Core1

. .

.

t1 t2

t

access X access X

write X

coherence miss

time

time

X X

time

invalidates X

installs X

Fig. 2: Cache coherence miss example

Note that if X is evicted from Core0’s private cache
between t1 and t2 because of a cache access by Core0, the
access at t2 will be a capacity or conflict miss instead of a
coherence miss. By convention, we classify such a miss as a
capacity miss, even if the cache line is invalidated by another
core before the evicting access by Core0. Thus, invalidations
of cache lines that would later anyway have been evicted for
capacity or conflict reasons do not give rise to coherence
misses. In other words, a necessary condition for being a
coherence miss is that without the invalidation, the next access
would have been a cache hit (in the private cache). This
convention is consistent with previous work [2].

III. NOTATIONS

In this section, we introduce the assumptions, terms and
notations used throughout this paper. We consider a multi-

threaded program (target program). We use i to index the cores
and threads. Each thread runs on a designated core (Threadi
runs on Corei). For a specific run with N threads of the target
application, the terms and notations used in our models are
shown in Table I.

Symbol Description
Overall parameters

N number of running threads of the target application
C private cache size of each core (in terms of the number of cache

lines)
L set of shared cache lines (of all cores) of the target application

Parameters of misses in the private cache
Mi(N) number of memory accesses by Corei, running with N threads
Mmiss

i (N) number of private cache misses by Corei, running with N threads
Mcold

i (N) number of cold misses of Corei, running with N threads
Mcap

i (N) number of capacity misses of Corei, running with N threads
Mconf

i (N) number of conflict misses of Corei, running with N threads
Mcoh

i (N) number of coherence misses by Corei, running with N threads
Mi,X(N) number of memory accesses to shared cache line X by Corei,

running with N threads

TABLE I: Table of notations

There are two kinds of notations we use in this paper: over-
all parameters (about the cache system and target application)
and cache misses. The overall parameters include the number
of running threads in the application, cache size and set of
shared cache lines. We use M to denote the number of cache
misses: Mcold

i (N), Mcap
i (N), Mconf

i (N) and Mcoh
i (N) for

the number of cold, capacity, conflict and coherence misses,
respectively.

The total number of misses in the private cache of Corei is
the sum of all four kinds of cache misses: cold misses, capacity
misses, conflict misses and coherence misses:

Mmiss
i (N) = Mcold

i (N) +Mcap
i (N) +Mconf

i (N) +Mcoh
i (N)

IV. MODELING COLD, CAPACITY, AND CONFLICT MISSES

In this section, we review existing methods to model and
predict the number of cold, capacity and conflict misses, which
will be used in our evaluation.

A. Modeling cold misses

A cold miss in the private cache of Corei is triggered
when a cache line is accessed for the first time by Corei.
In this paper, we therefore use the number of distinct cache
lines accessed by Corei as an estimate of Mcold

i (N). Note
that some of the accessed cache lines may have been brought
into the private cache by prefetching, and thus this estimate in
general overapproximates Mcold

i (N). However, we will still
use this estimate (in the evaluation part) since it is difficult to
estimate the effect of prefetching, and since cold misses are
not the focus of this paper.

B. Modeling capacity and conflict misses

Both capacity and conflict misses are caused by eviction of
cache lines. They differ in the cause. If a cache line is evicted
because the cache is full, it causes a capacity miss. The eviction
for conflict misses is due to the mapped set being full (in a
non-fully-associative cache).

98

john
高亮

john
附注
这里代表的是某一个线程就是在特定的核上运行，也就是说研究的重点就是研究了负载分配算法最简单的情况。ok，看了下面的解析我又有点懂了，难道说现在多核的使用还是多个核看成了一个虚拟核，而这个虚拟核就是负责跑一个task，而这个task有很多的线程组成，而这个线程就可以被分配到不同的物理核上面去。

john
高亮

john
高亮

john
附注
因为存在预取机制，所以很难估计出这个冷cache miss开销问题。

john
附注
这里有很多的假设还概念。

john
附注
在单核情况下，一共有三种cache miss种类。Cold miss，Capacity miss ，以及Conflict miss。

john
高亮

john
附注
明显的cacheline数目来评估Mi(cold)。

john
附注
由于预取机制存在，且很难评估出预取的影响。

john
高亮

The number of capacity misses depends on a program’s
data locality, cache size and replacement policy. For a fully-
associative cache with the Least Recently Used (LRU) replace-
ment policy, stack distance analysis [9]–[11] is a common way
to model the number of capacity misses. The stack distance is

Core0

X Y Z Y Z Y Z Y Z X

stack distance 2

time

Fig. 3: Example memory access sequence: letters represent
cache lines

defined as the number of distinct cache lines accessed between
the reuse of a cache line. For example, given a memory access
sequence in Figure 3, the stack distance of the second access
to X is two since there are two distinct cache lines accesses
(Y and Z) in between the two accesses of X . In a fully-
associative cache with cache size C < 2, X would have
been evicted before it is reused, resulting in a capacity miss.
If C ≥ 2, the second access to X would be a capacity
hit. In a fully-associative cache with the LRU replacement
policy, the stack distance distribution can be estimated with
the reuse distance distribution [3]. The advantage is that reuse
distance distributions can be obtained efficiently by sampling,
even on native executions, whereas obtaining exact stack
distances requires exact recording of memory access sequences
([?] proposes hardware support to collect the stack distance
efficiently).

Conflict misses can be modeled with set stack dis-
tance [12]. The set stack distance of a memory access is
the distinct number of cache lines accessed within the same
set between the reuse of the memory access. In the previous
example in Figure 3, assuming X and Y map to the same set,
the set stack distance of the second access to X would be one.
The sets are isolated and accesses to one set cannot evict data
from another set. If the set stack distance is bigger than the set
associativity, the memory access will result in a conflict miss.
In a non-fully-associative cache, the conflict misses contain
capacity misses. In the evaluation in Section VII, we adopt
set stack distance analysis to calculate the number of conflict
misses.

V. MODELING CACHE COHERENCE MISSES

So far we have discussed how to analyze the number
of cold misses, capacity misses and conflict misses in the
private cache. These three kinds of misses only depend on
the data locality of the memory access to the core and the
cache parameters (cache size, cache replacement policy and
set associativity). Given a memory access sequence and cache
parameters, the numbers of these misses are deterministic.
However, the number of coherence misses is non-deterministic,
since it depends on the pattern of interleaving accesses to
shared data between cores. One way to analyze the coherence
misses is to enumerate and model all possible interleavings,
which is time consuming. In this section, we describe our two

probabilistic models (uniform and phased) and a third model
(symmetric) for estimating the number of coherence misses.

The first two models (uniform and phased) are based on
the following reasoning. Assume that the target program is
running on N cores. Consider a particular core Corei and a
particular memory access x to a cache line X by Corei. It
follows from the description in Section II that in order for
the memory access x to be a coherence miss, the following
conditions must be satisfied:

1) x is not a cold miss, i.e., the access to X is a reuse.
2) x is not a capacity or conflict miss.
3) Corei shares cache line X with at least one other core,

which may write to X .
4) Another core performs a write access to X before the

access x, but after the previous access to X by Corei.

The access x has a well-defined reuse distance in the sequence
of memory accesses by Corei, which is defined as the number
of memory accesses between the last access to X by Corei
and the access x. For example, in Figure 4, the last access to

Corei

Corej

X Y Z Y Z Y Z Y Z X

memory access x

write X

dx = 8

invalidation window

time

time

Fig. 4: Coherence miss example: Corei and Corej share a
cache line X. Corei reuses X with reuse distances dx.

cache line X by Corei has reuse distance 8. Let dx denote
the reuse distance of access x. Between its previous access to
X and the access x, the core Corei leaves a window for other
cores to perform write accesses to X that invalidate Corei’s
copy of X . The reuse distance dx is a measure of the size of
this window. Note that the relevant measure of window length
is the reuse distance, not the stack distance, since it is not
relevant whether the accesses in the window are to different
cache lines or not.

Let us now consider all accesses to cache line X by Corei
with some fixed reuse distance d. Let P cap

i,d,X(N) denote the
probability that such an access (i.e., an access by Corei to
cache line X with reuse distance d) is a capacity or conflict
miss. Let P inv

i,d,X(N) denote the probability that another core
performs a write access to X before such an access, but after
the previous access to X by Corei. We can then compute the
probability that an access by Corei to cache line X with reuse
distance d is a coherence miss, denoted P coh

i,d,X(N), as

P coh
i,d,X(N) = P inv

i,d,X(N)(1− P cap
i,d,X(N)) (1)

The probability P cap
i,d,X(N) can be obtained by stack distance

analysis. As described in Section IV-B, it can also be efficiently
approximated from a reuse distance histogram that can be

99

john
高亮

john
高亮

john
高亮

john
附注
这里面有一个假设，就是这三个X,Y,Z数据都是在一个cacheline内。

john
高亮

john
附注
same set of the cache。那么可以怎么办呢？利用叫做set stack distance的方法，因为对于同一个set的来说，就是全关联的cache。

john
附注
在非全关联的cache中，conflict miss包含了capacity miss本文就使用了set stack distance的概念。如果一个set的stack 的distance超过了set关联度那么就灰产生一个conflict miss。其实抽象的看，在set里面conflict miss就是全关联的容量miss。

john
高亮

john
高亮

john
高亮

john
附注
这里可以用来建模，从机理的角度对conuter值进行建模。

john
附注
从9到11参考文献都是关于这个工具的，还有12.

john
高亮

john
高亮

john
附注
在一个采样window下，另一个核可能写入这个cacheline的概率乘以（1-由于cache 容量不足，或者是cache conflict引起的miss）左边乘以的选项是写入频率。针对某一种d的写入频率。应该能得到一个写入的时间分布。

john
附注
写频率应该是个平均频率或者是个符合某种概率的频率。

john
高亮

john
附注
stack distance就是针对同一个cahceline的（应该说是针对同一个memory address的访存之间经历的访存指令数目。）这个是按照种类来算。

john
高亮

john
附注
这里有个前提就是必须是全关联cache的情况下，我们可以使用reuse distance能过获得从reuse distance到stack distance的转换。不过有个优点就是重用距离能够很容易获得。通过采样的方式。

john
高亮

john
附注
如果是线性求和就是，说明每种时间只会发生一次，比如重用距离的概率，所以我认为这里应该将重用距离的分布加入其中。

john
高亮

john
附注
如果不是自身的cache capacity或者confilct的引起的，那么再乘以使用由于另外一个core写入引起的cache miss的概率。

john
高亮

john
高亮

john
附注
我懂了。

john
附注
在给定访存序列和cache参数的情况下，miss的数量是确定的。但是一致性访存缺失的数量是不确定的。

john
高亮

john
附注
其依赖于交织访存的pattern。那么这个pattern怎么获取，或者是怎么预估呢？

john
附注
一种方法是记录或者是model所有可能的交织访问情况，这个非常的耗时。这里有点类似于DDR控制器的pattern建模。

john
高亮

john
附注
要不就是用这种概率性模型。也就是文中提出的概率性模型。三种，一种是uniform的，一种是phased，还有一种是symmetric的(这种适用于流数据处理。)

john
附注
对coherence miss进行了定义值得注意的是第四点。

john
附注
针对固定的重用距离，然后再将所有的重用距离可能加起来。这里取得是平均概率的意思。也就是重用距离为d的情况下，发生coherence miss的可能性有多大。

obtained by sampling native executions, using the technique
of [3].

Let Pi,d,X(N) denote the probability that when the ap-
plication executes on N cores, an access by Corei accesses
cache line X with reuse distance d. By summing over all
reuse distances, we can obtain the probability P coh

i,X (N) that
an access by Corei to cache line X is a coherence miss as

P coh
i,X (N) =

∞∑
d=1

Pi,d,X(N)P coh
i,d,X(N) (2)

Substituting P coh
i,d,X(N) by Eq. 1,

P coh
i,X (N) =

∞∑
d=1

Pi,d,X(N)P inv
i,d,X(N)(1− P cap

i,d,X(N)) (3)

Let Mi,X(N) denote the total number of memory accesses to
X by Corei (with N running threads), and let L be the set
of cache lines that are shared between cores. The expected
number of coherence misses for Corei is then

Ecoh
i (N) =

∑
X∈L

(Mi,X(N) · P coh
i,X (N)) (4)

Now the remaining problem is to calculate the probability
P inv
i,d,X(N) of an invalidating access by another core during the

reuse window. In this paper, we propose two models for this
calculation, model uniform and model phased. The uniform
model assumes that accesses by each thread to each data item
are spread uniformly throughout the execution. The phased
model works even without this restriction, by dividing the
execution of the program into phases, and considering accesses
in different phases separately.

A. The uniform model

This model assumes that we can approximate the accesses
of each thread as occurring uniformly throughout the ex-
ecution, and without correlation between threads. Such an
assumption is valid for applications that access and update
some common data in a way that is not tightly coordinated. To
calculate P inv

i,d,X(N), assume that a core Corej different from
Corei writes to cache line X with a frequency of Fwrite

j,i,X (N)
per memory access of Corei. This frequency shows the number
of write accesses to X by Corej for each memory access of
Corei. In many applications the frequency of memory accesses
is approximately equal for all cores, and Fwrite

j,i,X (N) does not
depend on i.

For a reuse distance d by Corei, the probability of Corej
not writing to X within a reuse window of length d is (1 −
Fwrite
j,i,X (N))d. Since the memory accesses of different cores are

assumed to be independent, the probability of at least one of
the cores writing to X within d is

P inv
i,d,X(N) = 1−

∏
j 6=i

(1− Fwrite
j,i,X (N))d (5)

By substituting for P inv
i,d,X(N) Eq. (3) and for P coh

i,X (N) in
Eq. (4), we obtain

Ecoh
i (N) =

∑
X∈L

(Mi,X(N) · P coh
i,X (N)) , (6)

where P coh
i,X (N)) is

∞∑
d=1

Pi,d,X(N)

(1−∏
j 6=i

(1− Fwrite
j,i,X (N))d)(1− P cap

i,d,X(N))

 (7)

B. The phased model

The uniform model assumes that all shared cache lines
are written uniformly by the cores throughout the execution.
This is not the case in all real applications. Some applications
show different patterns of shared data access in different
parts of the execution, or coordinate access to shared data
by synchronization. A change of phase is typically marked by
synchronization primitives (e.g., conditional variables, barriers,
etc). For example, the bodytrack benchmark in the PARSEC
benchmark suite has a producer-consumer structure. The mas-
ter threads (the main thread and the I/O thread) first generate
the shared data by writing to it: thereafter they signal the
worker threads (by signaling a conditional variable) to start
processing the shared data. Although a significant amount of
data is shared, the master and worker threads’ accesses to
shared data are separated by the signaling of the conditional
variable. Such a separation prevents interleaved accesses to
shared data by the master and worker threads. Without these
interleaved accesses, the master threads’ writes to the shared
data do not cause any coherence misses in the worker threads.

time

Sync point
phase1

master threads
generate
shared data

phase2

worker threads
process shared
data

Fig. 5: The division of phases for bodytrack

The phased model generalizes the uniform model to handle
programs with phase-dependent pattern of accesses to shared
cache lines. The phased model divides the execution into
phases, by letting synchronization primitives (conditional vari-
able, barriers, etc) determine that a new phase is entered. There
are two kinds of coherence misses with the phase division:
intra-phase coherence misses where the coherence miss is
caused by an invalidating write in the same phase as the two
accesses of the core that experiences the coherence miss, and
inter-phase coherence misses, where one of the accesses by
the core with coherence miss occurs in a different phase from
the invalidating write access (cf. Figure 6).

The intra-core coherence misses are analyzed using the
uniform model in each phase. Inter-core coherence misses are
analyzed by the phased model as follows. For each phase,
we keep track of which shared cache lines are written to by
each core. In addition, for each core we keep track of the
distance df between each phase boundary and the first access
to each cache line X , and symmetrically the distance dl from
the last access to each cache line X and the following phase

100

john
附注
不同的resue距离的平均概率。

john
高亮

john
附注
让L等于两个核间可能会共享的数据。所应定的set 数据。

john
高亮

john
高亮

john
附注
这个统一的模型能够帮助我们评估一个单一的线程在没有进行线程间通信的时候，它会产生多少次的access。

john
高亮

john
附注
在很多应用下，memory 访存的频率队友所有核来说几乎相等。而且这个概率不依赖于跑哪个核上。

john
附注
到目前为止就是一个概率公式，具体的值比如写频率应该是可以通过阶段性采样获得的。

john
附注
这个就是模型的重点地方。写频率的估计。这个如果估计不准确就是不对。

john
高亮

john
高亮

john
附注
这个写的概率该如何确定呢？我觉得这里就是创新点了，或者说安卓是否在写某一个cahceline的表征上也是满足这个特性？目前来看这里的概率，其假设写的概率一定的，即连续发生6次不写的概率是多少。

john
附注
1减去的部分，所有不会发生任何针对某一个cahceline写入的概率，当被1减去后，就产生了至少被一个核写入的概率。

john
附注
只要被写过了，不管写过几次，在一个d内，就会造成一个次cache miss这里果然是每个d都是一次进行叠加了。我这个时候可以将两个部分进行叠加，进行使用。这里的概率可以用分布函数做。发生的概率，与发生了d的分布好像没什么关系？这里可不可以也做一个概率分布呢？

john
附注
均匀模型。

john
高亮

john
附注
改变的阶段基本被同步标志mark。后面举得例子是具有生产消费结构的，也就是当生产完成了生产并产生了信号的时候。也就是一个线程写入（产生了一个公用的数据的时候，另一个线程才开始进行共享数据处理）

john
高亮

john
高亮

john
高亮

john
附注
这里说的是另外一种情况，两个线程想要使用共享数据，被某种操作系统层面的信号量约束了。

john
附注
所以在这里提出了两个阶段分析，第一个阶段是关于master线程产生了共享数据，而另一个work线程需要受到信号量控制，才进入第二个阶段进行共享数据处理。

john
高亮

john
附注
其实就是在连续模型情况下，加入了阶段相关的pattern。

john
附注
实际上，不是每次d里面都有我们想要的东西，所以要用信号量来找到我们真正需要的d。

john
高亮

john
附注
这种情况下，有两种情况的coherent的miss，一个是在同一个phase下的，还有就是在不同phase下的。

john
高亮

john
高亮

john
附注
track了每个阶段的边界。以及同步了last access的步长dl。（这块还没搞懂，一会再看看~）

john
附注
用采样方法提取set distance的论文。

john
高亮

john
附注
表示的是，某一个核自身访问同一个access X的重用距离为d的概率。这个本身概率就是d分布的一种。不过这个概率获得途径应该是平均值，或者是采样，统计重用距离为d的个数。

john
附注
这个频率和概率之间的转换没有看懂。

john
附注
回答上面没有回答的问题，实际上，这个计算的是一个总的概率，拿这个总的概率乘以访问的总次数，就能得出miss数。上面做d分布已经和上述的Pi，d，x重复了。

boundary. The distribution of these distances are summarized
in the probabilities Pfirst

i,df ,X
(N) and P last

i,dl,X
(N), respectively,

for each df and dl.

For a target core Corei, and for all pairs of phases
phasefirst and phase last such that Corei does not access X
in the phases between phasefirst and phase last , the phased
model predicts (i) one coherence miss if X is written to by
another core in a phase between phasefirst and phase last , and
(ii) a coherence miss with probability

∑
df

∑
dl

P first
i,df ,X(N)P last

i,dl,X(N)

1−∏
j 6=i

(1− Fwrite
j,i,X (N))df+dl

if X is not written to by another core between phases
phasefirst or phase last . This formula gives the probability
for an invalidating access in either phasefirst or phase last .
For simplicity, we have assumed that Fwrite

j,i,X (N) is the same
in both phases, otherwise the formula must be refined to
consider two different frequencies in the obvious way. Since
the probability in the second case is typically small, and can
add at most one coherence miss, we often omit it in the
analysis.

Corei

Corej

time

time
phase1 phase2 phase3

access X

write X

access X

dl df

inter-phase coherence miss

Fig. 6: Inter-phase coherence miss, phases divided by
synchronization points

C. The symmetric model

For multi-threaded applications where threads access both
local and global data in a symmetric way, we propose our third
model, called the symmetric model. Applications to which this
model can apply include network packet processing, streaming
applications, etc. Due to the symmetry assumption, we can
avoid applying uniform or phased, which needs information
about reuse distance distributions and write frequencies to
shared data. The symmetric model, in that it assumes that all
threads can be treated symmetrically, needs less information
about the behavior of each thread.

We consider programs that process a large set of input data
items, which are evenly divided among threads. The threads
maintain some shared data structure (e.g. a hash table) in order
to manage the data items. All accesses by all threads to the
shared data locations are randomly chosen. Different accesses
(even by the same thread) are uncorrelated. All threads access
the shared data structure randomly and independently, i.e., the
threads have symmetric access patterns to the shared data.
Given these assumptions, the write frequency Fwrite

j,i,X (N) is

independent of j, i,X or N . Fwrite
j,i,X (N) can be obtained by

speculating the code or profiling one loop of the application.

To present our analysis, let us introduce the following
notations:

L is the size (number of cache lines) of the input
data to be processed. L only includes the part of
the input data not having false-sharing effects with
the shared data.

S is the size of shared data
kS is the total number of accesses to S by all threads

during the whole execution.

We make the following assumptions, which holds in typical
applications. The input data size is much larger than the size
of the shared data and cache size (L >> S and L >> C).

Let us describe how the symmetric model models the
different kinds of private cache misses.

Cold misses: When the application executes with only one
thread, it accesses L local data and S shared data. Thus, the
number of cold misses is M cold

1 (1) = L+S. When parallelized
with N threads, the assumption on symmetry makes sure the
input data is distributed evenly. Each thread processes 1

N of
the total input data but all threads access the shared data:
Mcold

i (N) = 1
N · L+ S. Assuming L >> S,

Mcold
i (N) ≈ 1

N
Mcold

1 (1) (8)

The point of this approximation is that Mcold
i (N) can be

expressed by N without knowing L or S.

Capacity and conflict misses: Let kL be all reuses to
L that are cache misses, which means the accessed cache line
have been evicted prior to the access. Since each access in kL is
a reuse of the non-shared data item, the eviction must be due to
the limited cache capacity, which makes the access a capacity
misses. Running with one thread, there are kL capacity misses
and with N threads, there are 1

N · kL misses for each thread
due to the symmetry assumption.

The shared data may be reused. Let r be the miss ratio in
the private cache for the shared data running with one thread.
When parallelized to N threads, due to the symmetry, each
core has the same cache size and each thread accesses both
the local and shared data in the same pattern as in the one-core
case. Thus the miss ratio r does not change with the number
of threads. Therefore the number of capacity misses for the
shared data is kS · r for the one-thread case and 1

N · kS · r for
each thread in the N -thread case. To sum up, the total number
of capacity misses is kL + kS · r and 1

N · kL + 1
N · kS · r for

one thread and N threads respectively. Thus we have

M cap
i (N) =

1

N
M cap

i (1) (9)

Similarly for the conflict misses:

M conf
i (N) =

1

N
M conf

i (1) (10)

101

john
高亮

john
附注
分布特性被做成了概率。也就是不同的数值可能产生的概率是多少，这个应该是概率分布。

john
附注
对称模型。

john
附注
实际上已经是对程序的应用特征进行了粗粒度的分配了，按照应用程序的不同给出了三个不同的模型。这个对称模型重点考虑写频率，还有重用距离的分布~

john
高亮

john
附注
对线程的行为依赖比较小。

john
高亮

john
高亮

john
附注
从这里开始讲到了写的频率的估算问题。

john
附注
这里的计数L，S都是关于cacheline大小的。L是local数据，S是共享数据。如果是多核多线程共享数据的话，那么local数据会被分成多核的份数，但是共享数据还是只是会经历一次S。

john
高亮

john
附注
我们认为程序需要很多的数据输入，而且这些数据输入会被等分到所有线程当中。这些线程包含了一些共享数据结构。这些数据结构为了能够管理这些数据。所有这些被线程控制的访存数据项的位置都是随机选择的。不同的访存（甚至是同一个线程产生的）都是毫不相关的。这些线程都拥有相同的pattern来访问共享数据。如果以上假设成立，那么数据写入频率就和j，i，x或者是N无关了。写入频率可以从就某特殊特码，或者是profile一个应用程序的loop来决定。

Coherence misses: To convert a Corei’s potential cache
hit into a coherence miss, the thread on a foreign core needs
to write to the shared data before its reuse by Corei.

We first consider the case of Fwrite
j,i,X (N) = 1, where each

access to the shared data is a write. For each thread, the
probability of the last write to the shared data not being the
same thread is 1 − 1

N . Then the probability of invalidating a
shared data item for each thread is simply Pinv(N) = 1− 1

N
in steady state.

Based on equations 8, 9 and 10, we can calculate the total
number of cache misses. In the one-thread run, there are only
cold, capacity and conflict misses:

Mmiss
1 (1) = Mcold

1 (1) +Mcap
1 (1) +Mconf

1 (1) (11)

If there are Mhit
1 (1) cache hits of shared data in the one-

thread case, the probability of converting each of them into a
coherence miss is Pinv(N). Thus we have

Mcoh
i (N) = Mhit

1 (1) · Pinv(N) (12)

and the total number of cache misses is the sum of the four
different kinds of misses. Putting equations (8), (9), (10), (12),
and (11) together, we get

Mmiss
i (N) ≈ 1

N
Mmiss

1 (1) +Mhit
1 (1) · (1− 1

N
) (13)

Then we measure the number of cache misses for one thread
and two threads to get Mmiss

i (2) and Mmiss
1 (1). We solve

equation (13) to get Mhit
1 (1).

With Mhit
1 (1) and Mmiss

1 (1) known, we now can predict
the number of private cache misses for any number of threads
with Eq. (13).

For the case where Fwrite
j,i,X (N) < 1, the calculation of

Pinv(N) becomes slightly more involved. We propose a tech-
nique for estimating 1 − Pinv(N) (i.e., the probability of an
access to the shared data not being a coherence miss) from a
recurrence equation, as follows.

Consider an arbitrary access to X by Corei. There are two
ways for the access not to be a coherence miss. Either

• The last access to X is by Corei; the probability for this
is 1

N , or
• The last access to X is by another core (the probability

for this is N−1
N), but it was not a write (the probability

for this is 1 − Fwrite
j,i,X (N)). In addition, the last access

previous to this one is again not a write by a core different
from Corei; the probability for this is (by the assumption
about independent and uncorrelated accesses to X) the
same as the probability that the original access to X is
not a coherence miss.

The above characterization yields the following equation

1− Pinv(N) =
1

N
+

N − 1

N
(1− Fwrite

j,i,X (N))(1− Pinv(N)) (14)

Solving Eq. 14 gives

Pinv(N) =
Fwrite
j,i,X (N)(N − 1)

Fwrite
j,i,X (N)(N − 1) + 1

VI. IMPLEMENTATION

In this section, we describe how we have implemented our
models, for the purpose of evaluating the applicability and accuracy
of our models by comparing predictions obtained by the models
with measurements from executions on actual hardware. The goal
is to compare the modeled number of coherence misses in the
private cache with the measured number. However, it is difficult
to measure the number of coherence misses on actual hardware.
One way would be to count the number of invalidation messages
sent by the cache coherence protocol. However, not all invalidation
messages will trigger future coherence misses. Therefore, using the
number of invalidation messages as the number of coherence misses
would be very inaccurate. However, the total number of private cache
misses can be easily measured by reading the hardware performance
counters. To compare with the measured total number of cache misses,
we sum up the number of all four kinds of misses to estimate the
total number of cache misses. Then this estimated value is compared
with the measured one.

A. Tracing the target program

We used Intel’s PIN [7] tool to trace memory instructions.
As a tool that introduces heavy profiling overhead (base overhead
without any user-inserted instrumentation is 30% [13]), PIN does not
guarantee to keep the traced program’s thread interleaving as when
the program runs on real hardware. Luckily, our models do not rely
on capturing the exact pattern of interleaving of threads. It is even
sufficient to run the target application with PIN on a single core.

For each memory access, we record the memory address, thread
id, operation (either memory read or write), and a logical stamp
which increments by 1 with each memory access. The logical stamp
shows the relative position of this memory access in all the memory
accesses by the same thread. When a synchronization primitive
(pthread_cond_signal(), pthread_cond_broadcast()
or pthread_barrier()) is encountered, the logical stamps of
all threads are recorded. This is used to divide the whole execution
into phases for the phased model.

PIN records virtual addresses with the first few bits indicating the
tag and index of the cache line and the last few bits indicating the
offset in the cache line (Figure 7). In our target platform, each cache
line is 64B, meaning the last 6 bits of the virtual address is the offset
in the cache line. Truncating these bits gives an address identifying
the cache line of the virtual address. This allows us to account for
the coherence misses caused by both true and false sharing.

Tag Index Offset

Fig. 7: Segments of a virtual address

B. Extracting input to our models from a trace

By profiling the target program, we get a trace of the memory
accesses. Now we need to extract input to our models from this trace.
uniform and phased need the following inputs for each kind of cache
misses:

• Cold misses: the number of accessed cache lines
• Capacity and conflict misses: the set stack distance of all

memory accesses.
• Coherence misses: reuse distance distribution for all shared

cache lines, and other threads’ write frequencies to the shared
cache lines

102

john
高亮

john
高亮

john
附注
这个在cotex A9的PMU里面似乎已经有了。

john
高亮

john
高亮

john
附注
用来从PMU模块统计出的总值和coherence 出来的值进行对比。

First, we generate a set of all the distinct cache lines accesses
by each core. By searching through all the sets, we find all the
shared cache lines. The number of cold misses can be estimated by
counting the number of distinct cache lines. The stack distance of
each memory access is measured by counting the number of distinct
memory accesses in the same set between the last and current access
to the same cache line. If the set stack distance is bigger than the
set associativity, the memory access is counted as a conflict miss.
Otherwise, if the accessed cache line is a shared cache line, we record
its reuse distance for the analysis for coherence misses.

To calculate the number of coherence misses for a target core
Corei, we need the reuse distance distribution of all shared cache
lines by Corei and the other core’s write frequency to all the shared
cache lines. We collect all reuse distance for all the shared cache lines
obtained from the previous step. Then we generate a reuse distance
histogram. Next, we get the frequency of other cores’ (other than
Corei) writes to X . For each Corej other than Corei, the frequency
of Corej writes to X is calculated as

Fwrite
j,i,X (N) =

writes to X

of total memory accesses of Corei

This frequency is a relative frequency of Corej to Corei where Corei

is our target core.

VII. EVALUATION OF OUR MODELS

A. Experiment setup

We evaluate our models on a 32-core system with 2.7GHz Intel
Xeon E5-4650 CPUs. There are 4 sockets with 8 cores on each socket.
The L2 cache is non-inclusive and non-exclusive of the L1 cache. A
cache line is 64B. The experiment machine implements a MESIF
coherence protocol [14].

Cache Specification
L1 32KB, private, 8-way
L2 256KB, private, 8-way
L3 20MB, shared among cores on the same socket

TABLE II: The cache hierarchy of the experiment machine

B. Obtaining reference cache misses

All the multi-threaded benchmarks run with each thread pinned to
a designated core. We read the hardware performance counter of each
core for L2 misses with the Performance Application Programming
(PAPI) library [15]. The performance counter starts right before a
thread is created and stops right after a thread finishes (The Pthread
library’s pthread_create() function was overridden to control
the counters). After collecting each core’s L2 cache miss count, we
take the average among all threads, which is used as a reference for
the number of cache misses in the private cache.

C. Benchmarks

To validate our model, we chose 7 benchmarks (blackscholes,
bodytrack, fluidanimate, streamcluster, raytrace, swaptions and
dedup) from the PARSEC 3.0 benchmark suite. 1 Table III shows the
input size and applied model for each benchmark. All benchmarks are
compiled with gcc version 4.7.2 and optimization level O3. We ran
all the benchmarks with 1− 8 thread(s), which utilizes all the cores
on one socket. For dedup, which implements the pipeline parallelism,
all threads in a parallel stage are assigned to the same socket.

1We excluded benchmarks that do not compile, have no input, incompatible
with the PIN framework and with no Pthread implementation.

benchmark input method
blackscholes 4, 096 options uniform

bodytrack 100 particles uniform, phased
fluidanimate 5, 000 particles uniform
streamcluster 128 input points uniform, phased

raytrace teapot.env uniform
swaptions 10, 000 swaptions uniform, phased

dedup 640MB random input data symmetric

TABLE III: Benchmarks and inputs

D. Results (all benchmarks except for dedup)

Figure 8 shows the evaluation results for the uniform and phased
models. Each vertical bar in the histogram represents the modeled
number of private cache misses. It is further divided into four kinds
of misses: capacity (including conflict) misses, cold misses, coherence
misses and inter-phase coherence misses. The reference dots are the
measured number of L2 misses. By comparing the number of different
cache misses as the number of cores increases, we can decide which
kind of miss is the scalability bottleneck for each benchmarks.

Benchmarks analyzed with the uniform model:
blackscholes and fluidanimate are analyzed with the uniform model.
These two benchmarks do not have phase-wise behaviors in accessing
the shared cache lines. The average relative error for uniform is 5.8%.
In blackscholes, the number of coherence misses increases with more
threads, which is due to the fact that the number of shared cache lines
fluctuates in a small range (between 642 and 730) regardless of the
number of threads. Sharing the same number of cache lines with more
threads will increase the number of coherence misses. This can be
shown in our model: the invalidation probability P inv

i,d,X(N) increases
if there are more foreign cores write to shared data according to
Eq. (5).

Benchmarks analyzed with both the uniform and phased mod-
els: bodytrack, streamcluster, raytrace and swaptions are analyzed
with the phased model. The run of streamcluster with one thread
does not have any coherence misses. Taking out this instance run,
the average relative error of all these benchmarks is 8.02%. The
phased model divides bodytrack’s whole execution into two phases,
where the master threads generate the shared data in phase1 and the
worker threads process the shared data in phase2. All the coherence
misses come from phase2 since the accesses to shared data from
phase1 do not interleave with the shared data accesses in phase2.
The number of capacity misses decreases with more threads. This
is because the amount of data for each thread decreases as there
are more threads sharing the data to process. For streamcluster, the
number of coherence misses dominates the total number of cache
misses. The inter-phase coherence misses contribute to a noticeable
part of the cache misses. This is due to the frequent barrier calls in
the benchmark (over 19, 000 barriers). Most shared variables are used
in several phases.

E. Applying the symmetric model to dedup

In this section, we take the dedup benchmark as an example to
show how to use the symmetric model to predict the coherence misses.
dedup implements pipeline parallelism (Fig. 3 in [16] shows the
structure). There are five stages in this benchmark. The first and last
stages are sequential and the other three stages are parallel. Adjacent
stages share buffer queue(s) (Q1-Q8). The first stage Fragment splits
the input data into coarse-grained chunks, then the FragmentRefine
stage divides these chunks into finer-grained chunks. The Dedupli-
cate stage processes the fine-grained chunks and inserts pointers to
them into a hashtable. Then the Compress stage compresses the
chunks. The last stage Reorder writes the compressed data into an
output file. Our analysis focuses on the Deduplicate stage.

103

john
附注
采样周期呢？

john
高亮

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8

N
o.

L
2

m
is

se
s

blackscholes

0

5000

10000

15000

20000

25000

30000

1 2 4 8

fluidanimate

0

50000

100000

150000

200000

250000

1 2 3 4 5 6 7 8

bodytrack

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

1 2 3 4 5 6 7 8

N
o.

L
2

m
is

se
s

#threads

streamcluster

0

100000

200000

300000

400000

500000

600000

2 3 4 5 6 7 8

#threads

raytrace

0

50000

100000

150000

200000

250000

300000

350000

1 2 3 4 5 6 7 8

#threads

swaptions

coherence misses
capacity misses

cold misses

inter-phase coherence misses
reference

Fig. 8: Evaluation results

In the Deduplicate stage, all threads process their local data
chunks and share a hash table. Each thread executes the following
loop: 1) fetch a data chunk 2) generate a hash key for the data chunk
and 3) search the hash key in the hash table 4) if the key is not found,
insert the key into the hash table. There are some false-sharing effects
between the local data and the shared data.

By applying the symmetric model, we obtain the invalidation
probabilities for 1−8 threads, as shown in Table IV. Then we measure

threads 1 2 3 4 5 6 7 8
inv prob 0 0.5 0.67 0.75 0.8 0.83 0.86 0.88

TABLE IV: Analyzed invalidation probability for
Deduplicate stage in dedup

the number of private cache misses for 1 and 2 threads, solve Eq. (13)
and use the equation to predict the number of private cache misses
for 3 − 8 threads (we can only evaluate the model with at most 8
threads since there are 8 cores on each socket). Figure 9 shows the
prediction results. The average relative error of the symmetric model
on dedup in predicting the number of L2 misses is 5.4%.

VIII. RELATED WORK

Stack distance: To quantify the data locality of a program,
Mattson et al [17] introduced the stack distance as a measure

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8

N
um

be
r

of
L

2
m

is
se

s

Number of threads

Measured L2 miss
Modelled L2 miss

Fig. 9: Modeling the number of L2 misses for each loop of
the Deduplicate stage in dedup

to describe a program’s data locality. It was used later by other
researchers to analyze program locality [18]–[21].

In the multicore era, Chandra et al [4], Xu et al [5] and
Eklov et al [6] used the stack distance histogram to model cache
contention in the shared cache. While predicting the cache contention
effect accurately, none of these methods consider inter-core data
sharing. Jiang et al [11] introduced the concurrent reuse distance

104

(CRD) to consider interleaved memory accesses by all cores. Wu
and Yeung [22] analyzed how the CRD changes with multiple
threads. Dilation, spreading and distortion effects are observed in
the CRD distribution compared to the non-concurrent reuse distance
distribution. This observation is used to predict the CRD distribution
with a number of threads.

Modeling coherence misses: So far the work taking coherence
misses into account has been sampling-based. Schuff et al [10]
presented a sampling-based approach to speed up detailed online
simulations. It keeps track of the stack distance profile of a multi-
threaded application and simulates the cache behavior with the profile.
It models both the shared and private caches without distinguishing
the kinds of cache misses. Each thread keeps a private stack and
the cache line invalidation is propagated to other threads at synchro-
nization points. Berg et al [2] also present a sample-based method
to analyze the data locality of a multi-threaded program. To capture
coherence misses, a cache line is monitored until it is reused by the
same core. During the monitoring, it maintains a writer list to catch
the foreign cores’ write to the cache line. On reuse by the same
core, a non-empty writer list means at least a core invalidated the
cache line, which makes the reuse a coherence miss. Both of the
sampling methods rely on capturing the exact thread interleavings.
Sampling-based approaches are sensitive to interference from other
processes. In addition, it cannot be used to model cache misses
for another hardware configuration (e.g., different cache size). Our
profiling approach only collects software-specific data, which makes
our profiling process insensitive to interference. Another advantage of
analytical-based approaches including ours is the ability to evaluate
performance in another system configuration. For example, our model
can be used to predict the number of cache misses with a different
cache size.

Optimization with inter-core data sharing: Zhang et al [23]
point out that the inter-core data reuse is not fully exploited by the
current on-chip cache hierarchy or the state-of-the-art optimizations.
An optimization scheme that balances the inter-core and intra-core
data reuse is proposed. Demetriades et al [24] propose a run-time
coherence miss prediction scheme. The scheme is based on the
observation that the coherence misses and synchronization points in
a program are usually correlated.

IX. CONCLUSION

In this paper, we proposed three new analytical models to analyze
cache coherence misses for a multi-threaded application on multicore.
The model builds on the observation that the occurrence of a coher-
ence miss is caused by a foreign write interleaving with the reuse of a
shared cache line. The model quantifies the cache coherence misses of
a core with the reuse distance distribution and the frequency of other
cores’ writes to the shared cache lines. The predicted cache coherence
misses can then be added to the cold misses and capacity misses
(calculated with existing methods) to model the total number of cache
misses in the private cache. The model we proposed can be used to
predict the private cache misses of a multi-threaded application for
different cache sizes and to guide program optimizations in order to
better utilize the private cache. We evaluated our models with a set
of benchmarks in the PARSEC benchmark suite.

X. ACKNOWLEDGMENT

This work is supported by the Swedish Foundation for Strategic
Research through CoDeR-MP, and by the Swedish Research Council
through UPMARC. We are very grateful to Andreas Sembrant, An-
dreas Sandberg and Alexandra Jimborean for the valuable discussions.
We would like to thank the anonymous reviewers for their helpful
suggestions.

REFERENCES

[1] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. dissertation,
Princeton, NJ, USA, 2011, aAI3445564.

[2] E. Berg, H. Zeffer, and E. Hagersten, “A statistical multiprocessor cache
model.” in ISPASS, 2006, pp. 89–99.

[3] D. Eklov and E. Hagersten, “Statstack: Efficient modeling of lru
caches,” in ISPASS. IEEE Computer Society, 2010, pp. 55–65.

[4] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting inter-thread
cache contention on a chip multi-processor architecture.” in HPCA,
2005, pp. 340–351.

[5] C. Xu, X. Chen, R. P. Dick, and Z. M. Mao, “Cache contention and
application performance prediction for multi-core systems.” in ISPASS,
2010, pp. 76–86.

[6] D. Eklov, D. Black-Schaffer, and E. Hagersten, “Fast modeling of
shared caches in multicore systems.” in HiPEAC, 2011, pp. 147–157.

[7] C.-K. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser, P. G. Lowney,
S. Wallace, V. J. Reddi, and K. M. Hazelwood, “Pin: building cus-
tomized program analysis tools with dynamic instrumentation.” in
PLDI, 2005, pp. 190–200.

[8] M. D. Hill and A. J. Smith, “Evaluating associativity in cpu caches.”
1989, pp. 1612–1630.

[9] K. Beyls and E. H. D’Hollander, “Reuse distance as a metric for cache
behavior,” in In Proceedings of the IASTED Conference on Parallel and
Distributed Computing and Systems, 2001, pp. 617–662.

[10] D. L. Schuff, M. Kulkarni, and V. S. Pai, “Accelerating multicore reuse
distance analysis with sampling and parallelization.” in PACT, 2010,
pp. 53–64.

[11] Y. Jiang, E. Z. Zhang, K. Tian, and X. Shen, “Is reuse distance
applicable to data locality analysis on chip multiprocessors?” in CC,
2010, pp. 264–282.

[12] G. Balakrishnan and Y. Solihin, “West: Cloning data cache behavior
using stochastic traces.” in HPCA, 2012, pp. 387–398.

[13] M. Bach, M. Charney, R. Cohn, E. Demikhovsky, T. Devor, K. M.
Hazelwood, A. Jaleel, C.-K. Luk, G. Lyons, H. Patil, and A. Tal,
“Analyzing parallel programs with pin.” 2010, pp. 34–41.

[14] “The common system interface: Intels future interconnect.” [Online].
Available: http://www.realworldtech.com/common-system-interface/5/

[15] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “Papi: A portable
interface to hardware performance counters,” in In Proceedings of the
Department of Defense HPCMP Users Group Conference, 1999, pp.
7–10.

[16] A. G. Navarro, R. Asenjo, S. Tabik, and C. Cascaval, “Analytical
modeling of pipeline parallelism.” in PACT, 2009, pp. 281–290.

[17] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation
techniques for storage hierarchies.” 1970, pp. 78–117.

[18] C. Cascaval and D. A. Padua, “Estimating cache misses and locality
using stack distances.” in ICS, 2003, pp. 150–159.

[19] C. Ding and Y. Zhong, “Predicting whole-program locality through
reuse distance analysis.” in PLDI, 2003, pp. 245–257.

[20] Y. Zhong, S. Dropsho, and C. Ding, “Miss rate prediction across all
program inputs.” in IEEE PACT, 2003, pp. 79–90.

[21] Y. Zhong, X. Shen, and C. Ding, “Program locality analysis using reuse
distance.” 2009.

[22] M.-J. Wu and D. Yeung, “Coherent profiles: Enabling efficient reuse
distance analysis of multicore scaling for loop-based parallel programs.”
in PACT, 2011, pp. 264–275.

[23] Y. Zhang, M. T. Kandemir, and T. Yemliha, “Studying inter-core data
reuse in multicores.” in SIGMETRICS, 2011, pp. 25–36.

[24] S. Demetriades and S. Cho, “Predicting coherence communication by
tracking synchronization points at run time.” in MICRO, 2012, pp. 351–
362.

105

john
附注
重用距离能否用在数据局部性上，且在片上多核上？没有提出数据是顺序处理器还是乱序处理器。

john
附注
考虑到了仿真速度，利用的是采样的手法。但是他的缺陷就是没有对cache miss种类进行区分。

john
高亮

john
高亮

seu_hgx
高亮

