
An Adaptive Cache Coherence Protocol for Chip
Multiprocessors

Abdullah Kayi
Department of Electrical and Computer

Engineering
The George Washington University

Washington, DC 20052, USA
apokayi@gwmail.gwu.edu

Tarek El-Ghazawi
Department of Electrical and Computer

Engineering
The George Washington University

Washington, DC 20052, USA
tarek@gwu.edu

ABSTRACT
Multi-core architectures also referred to as Chip Multipro-
cessors (CMPs) have emerged as the dominant architecture
for both desktop and high-performance systems. CMPs
introduce many challenges that need to be addressed to
achieve the best performance. One of the big challenges
comes with the shared-memory model observed in such ar-
chitectures which is the cache coherence overhead problem.
Contemporary architectures employ write-invalidate based
protocols which are known to generate coherence misses that
yield to latency issues. On the other hand, write-update
based protocols can solve the coherence misses problem but
they tend to generate excessive network traffic which is espe-
cially not desirable for CMPs. Previous studies have shown
that a single protocol approach is not sufficient for many
sharing patterns. As a solution, this paper evaluates an
adaptive protocol which targets write-update optimizations
for producer-consumer sharing patterns. This work targets
a minimalistic hardware extension approach to test the ben-
efits of such adaptive protocols in a practical environment.
Experimental study is conducted on a 16-core CMP by us-
ing a full-system simulator with selected scientific applica-
tions from SPLASH-2 and NAS parallel benchmark suites.
Results show up to 40% improvement for coherence misses
which corresponds to 15% application speedup.

Keywords
chip-multiprocessors, cache coherence protocols, multi-core
architectures, directory-based cache coherence

1. INTRODUCTION
The demand for computing power continues to increase in
virtually every domain, from the basic desktop systems to
the high-end computing platforms. In the past, performance
increase in processors was mainly reached by increasing clock
frequency and designing more complex systems [9, 49]. As
stated in Moore’s law, the number of transistors inside a

single chip has continued to increase exponentially. How-
ever, using all these transistors for a single processing core is
facing practical challenges. These challenges include power
dissipation, thermal constraints and limited instruction-level
parallelism [10, 24]. Accordingly, major microprocessor ven-
dors have shifted their designs into utilizing the available
number of transistors inside a single chip by using multi-
ple homogeneous cores resulting in multi-core architectures
or also known as Chip Multiprocessors (CMPs). These ar-
chitectures provide a solution to increase the performance
capability on a single chip without requiring a complex sys-
tem and increasing the power requirements [10, 13, 19, 26].
Therefore, CMPs have become the dominant architecture for
both desktop and high-performance platforms. Several chip
manufacturers including AMD, IBM, Intel, and Sun have
released systems, which have multiple processing units on a
single chip. This trend will likely to continue with more and
more cores being put on a single chip [26, 3, 4]. Accord-
ingly, not only the high-end computing systems but also the
commodity computing platforms include a certain level of
shared memory system with multiple processing cores.

Shared memory systems provide various advantages includ-
ing a simple programming model but this comes with the
cost of memory consistency and coherency problems. As we
see more and more cores are put on a single-chip, cache co-
herency strategy will become a key performance bottleneck
in CMPs as it was experienced in earlier SMP/ccNUMA
systems. Recent research has shown the severe effects of
cache coherence overhead on application performance in-
cluding large high-performance clusters with multi-socket
CMP based shared memory nodes [32].

Based on the policy during a write operation on shared
data, cache coherence protocols fall into two main categories,
write-update based protocols or write-invalidate based pro-
tocols. Write-update protocols entail interprocessor com-
munication on every write operation to shared data. Write-
invalidate protocols maintain cache coherence by invalidat-
ing copies of a memory block when the block is modified
by a processor. The advantage of this is that at most the
first write, in a sequence of writes to the same block with
no intervening read operations from other processors, causes
inter-processor communication. Hence, subsequent write op-
erations can be completed locally until the same data block
is requested by another processor. As such, write-invalidate
protocols yield to less network traffic and accordingly pro-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IFMT ’10, 19-JUN-2010, Saint-Malo, France
Copyright 2010 ACM 978-1-4503-0008-7/10/06 ...$10.00.

vide a better scalable solution to the cache coherence prob-
lem but they suffer from the high read latency induced by
cache coherence misses. On the other hand, previous re-
search has shown that coherence misses or cache-to-cache
misses comprise a big portion of overall cache misses in
shared memory systems [7, 6, 23, 18, 43] and write-update
protocols can degrade these coherence misses [50, 27, 17].
However, write-update protocols tend to generate high traf-
fic on the interconnect due to unnecessary updates especially
for migratory objects. So, a single cache coherence policy so-
lution to effectively provide performance for different type of
applications is not feasible. Having said that, it is difficult
to implement a write-update based protocol on unordered
interconnects and in general performance improvements de-
grade by having a sequentially consistent memory system
for these protocols. Therefore, most contemporary systems
implement a write-invalidate based cache coherence proto-
col.

As a solution, we propose a data-forwarding protocol for
producer-consumer sharing blocks on top of a write-invalidate
protocol similar to the study conducted by Liqun et. al for
ccNUMA systems in [17, 16]. The goal is to have a min-
imalistic approach for hardware requirements and not en-
tail large design space modifications. As such, the proposed
mechanisms do not change the memory model seen by the
programmer and compiler. Proposed adaptive protocol can
be implemented on top of any write-invalidate protocol and
can work with existing language, compiler, and processor
designs.

The rest of this paper is organized as follows: Section 2
gives an overview of the related work; Section 3 discusses
some background information on the adapted base architec-
ture details and the base directory cache coherence protocol.
Section 4 describes the implementation details including the
proposed Producer-Consumer Predictor Cache(PCPC), the
consumer set prediction mechanism, and verification of the
adaptive protocol. The simulator environment as well as the
simulation workloads are explained in Section 5. Also, Sec-
tion 5 presents and analyzes the experimental results; and
Section 6 contains a summary and conclusions of the study
with future work.

2. RELATED WORK
There have been numerous efforts to improve cache coher-
ence protocols performance. The selection of the cache co-
herence write policy on shared data, write-invalidate versus
write-update, has been the main focus of many earlier stud-
ies [29, 20, 51, 45, 22, 21, 33, 12, 50, 47]. Many papers
have examined shared memory behavior and tried to opti-
mize underlying cache coherence protocols for specific static
data sharing patterns such as migratory sharing [20, 51],
read-modify-write sequences [46, 47], pairwise-sharing [28],
and producer-consumer sharing [17, 16]. This work targets
the producer-consumer sharing as this sharing pattern was
shown to be the weakness of write-invalidate protocols.

Broadcast-based snooping protocols versus directory-based
protocols have also been examined to study the bandwidth
and latency trade-off between these two choices [14, 41, 42].
Although snooping protocols provide lower latencies as tar-
geted in this paper, they also generate heavy traffic and put

too much burden on the interconnect. Furthermore, they
usually require an ordered network such as bus intercon-
nect which can be another performance bottleneck. As such,
bus-based systems are not scalable. Hence, in this work we
implemented our protocol utilizing a directory scheme.

Producer-initiated communication was suggested to allevi-
ate long miss latencies. Koufaty et al. studied data for-
warding mechanisms utilizing compilers [33], Abdel-Shafi et
al. evaluated fine-grain producer-initiated communication
in cache-coherent multiprocessors [5], Byrd et al. examined
the performance gap between shared memory and message
passing machines and analyzed producer-initiated commu-
nication as a solution to close this gap [15]. All these stud-
ies were at the software level, our study looks at the prob-
lem from hardware perspective and implements the proposed
mechanisms as a hardware-based cache coherence protocol.

Dynamic self-invalidation was proposed by Lebeck and Wood
[36] to eliminate the invalidation overhead. Later, Lai and
Falsafi [35] improved this mechanism using last-touch pre-
diction.

A different approach to deal with cache coherence overhead
is based on coherence predictors. Mukherjee and Hill [44]
proposed Cosmos coherence message predictor with an ex-
tended study on Yeh and Patt’s two-level PAp branch pre-
dictor [53]. Kaxiras et al. [30, 31] proposed instruction-
based predictors as an alternative to address-based predic-
tors to move the shared data close to the consumers as soon
as possible. Lai et al. [34] proposed pattern-based mem-
ory sharing predictors which reduces the memory require-
ments of the previous proposed predictors. Acacio et al.
[7] devised a prediction scheme for owner prediction to con-
vert 3-hop cache-to-cache misses to 2-hop misses and they
utilized prediction schemes to tackle upgrade misses in [8].
Coherence predictor cache was designed and evaluated in
[48] as a resource-efficient coherence predictor. Nilsson et
al. made an observation based on SPLASH-2 kernels that
coherence activity footprint is confined to a small fraction of
the whole data set. Further, they utilized Address filtering
to avoid unnecessary caching to the Coherence Predictor
Cache which inspired us to use the same strategy for our
Producer-Consumer Predictor Cache(PCPC). Martin et al.
[40] analyzed commercial workloads and according to the
sharing patterns of the observed workloads they proposed
destination-set prediction to reduce indirections caused by
directory protocols. Perceptron-based coherence predictors
were suggested and experimented in [37, 25]. Most of these
extensions require major modifications and relatively costly
for a CMP design.

3. BACKGROUND INFORMATION
This section gives some details about the experimented base
CMP architecture. Also, the governing base cache coherence
protocol is described in this section.

3.1 Base Architecture
Our target system architecture is a tiled-CMP with 16 cores
designed via 4x4 2D-MESH interconnect topology as can
be seen in Figure 1. Each tile contains an in-order, dual-
issue UltraSPARC-III Cu processor with 2GHz clock fre-
quency. The first level cache is a split-cache with 4-way

Figure 1: Target Tiled-CMP architecture; 16 core-CMP connected via 4x4 2D-MESH topology

set-associative 64KB instruction and data caches. Second
levels caches are private, unified 4-way set-associative 2MB
caches with 4-cycle hit latency. Directory is distributed
among the tiles where each tile contains the blocks that
are homed by that processor. Both the memory and direc-
tory is accessed via on-chip memory controllers. The corre-
sponding tiled-CMP provides a globally addressable shared
memory yielding to a cache-coherent Non-Uniform Mem-
ory Access(ccNUMA) architecture on a single chip. Cores
are connected with an unordered 2D-MESH with an 8GB/s
unidirectional link bandwidth. Table 1 presents the details
of the target machine. Only addition to the base architec-
ture to implement the proposed adaptive cache coherence
protocol is the Producer-Consumer Predictor Cache(PCPC)
which will be described in more details in the next section.
Although, we adopted this tiled architecture as a base, our
proposed work can work on any CMP with private caches
at some level of the memory subsystem.

3.2 Base Coherence Protocol
Our adaptive protocol is based on a write-invalidate direc-
tory protocol with MOESI states. MOESI protocol is named
after the five states possible for any line in a particular cache.
That is, any given cache block can be at one of the following
states:

1. Invalid(I): Data inside the corresponding cache line is
stale, invalid.

2. Modified(M): Processor holds the most recent copy
and no other processor has a copy.

3. Exclusive(E): Processor holds the most recent, correct
copy of the data. Main memory also has a valid copy.

4. Shared(S): Similar to Exclusive state except multiple
processors can have the recent copy. In order to have
the recent copy also in the main memory, no other
cache line may hold the data in the Owned state.

5. Owned(O): Only one cache line can be at this state,
the other processors must be in the Shared state. This
helps to identify the processor which is responsible for
write-backs to main memory.

In a directory-based protocol, mainly following classification
is utilized to differentiate processors [7]:

• The home node is the processor in whose main memory
the requested block resides.

• The exclusive node is the processor that holds the most
recent copy of the cache block.

• The requesting node is the processor that requests the
cache line after a miss in its own cache.

The main disadvantage of a such a directory-based write-
invalidate protocol is the 3-hop misses required to complete
the events that are generated after L2 misses in request-
ing nodes in which home node doesn’t have the latest copy.
Our proposed protocol targets this bottleneck by alleviating
the latency burden via data-forwarding protocol extensions
to establish write-updates for lines that are deemed to be
exhibiting producer-consumer sharing pattern.

4. IMPLEMENTATION DETAILS
In this section, we will give some more details about the
proposed protocol and the hardware mechanisms to identify
producer-consumer sharing pattern.

The ideal situation in the destination-set prediction is to
speculate the most accurate set of receivers in a timely man-
ner to alleviate overall latencies without causing extra traf-
fic on the network. Unfortunately, accuracy comes with
extra hardware cost. Our goal is a minimalistic approach
to the problem to be able to provide reasonable extensions

Table 1: Architectural Details

Parameter Value

Processors In-order 2-way UltraSPARC-III Cu processor, 2GHz
of cores 16
L1 Caches Split I&D, 64KB 4-way set associative with 64-byte blocks per core, 1-cycle hit latency
L1 Replacement Policy Pseudo-LRU
L2 Caches 4-way set associative with 64-byte blocks per core, 4-cycle hit latency
L2 Replacement Policy Pseudo-LRU
PCPC Replacement Policy Pseudo-LRU
Coherence Mechanism directory-based protocol based on MOESI states
Memory 512MB per core shared memory
Interconnect 4x4 2D MESH, 4-cycle latency per hop, 8GB/s unidirectional link bandwidth

to upcoming CMP systems. As we also mentioned before,
large design space modifications is not desirable for our pur-
poses. Thus, we implement the prediction mechanism on
each core’s directory controller.

4.1 Producer-Consumer Predictor Cache
Producer-Consumer Predictor Cache(PCPC) is the only
hardware extension required to implement the proposed
adaptive protocol. It uses the directory state informa-
tion with some additional bits to track down the producer-
consumer sharing pattern for a cache block. Each core has
its own PCPC tracking only the blocks homed by that node.
PCPC is tagged, 4-way set-associative and indexed by data
block addresses with a size of 4K elements. PCPC utilizes
address-filtering as suggested in [48] to eliminate the unnec-
essary caching of blocks to save design space. Only blocks
that are detected as coherence blocks are cached in PCPC.
To determine this, PCPC utilizes a last writer bit to check
during a cache miss whether the reader matches the last
writer. Lines with different readers are selected as coher-
ence blocks. Coherence prediction tracking is done parallel
with the cache access. Each predictor entry also includes a
3-bit saturating consumer counter to track the consumers.
Although there are lots of limitations with this approach,
this study aims to analyze potential gains with such small
hardware extensions. We are also exploring more aggressive
approaches as an ongoing research.

The adaptive protocol is based on a write-invalidate proto-
col with MOESI states as described earlier in Section 3.2.
Protocol is extended to support data forwarding as if in a
write-update protocol to the predicted consumer set when
prediction mechanism detects a producer-consumer sharing
pattern. All memory system is based on a sequentially
consistent system which makes it a more practical solution
although relaxed-memory consistency models would have
helped our system architecture better in terms of perfor-
mance.

4.2 Producer-Consumer Prediction
Producer-Consumer sharing pattern can be defined via the
following regular expression:

... + (Wa)(R∀b:b6=a) + (Wx)(R∀y:y 6=x) + ...a, b, x, y ∈ S (1)

Wx and Rx refers to write and read operations by processor
x. S refers to the complete list of processors in the system.

In order to track-down the producer-consumer sharing pat-
tern we follow a similar approach as in [16, 40]. PCPC is
extended with recent sharers field to designate the potential
consumers. The recent sharers field is similar to sharing vec-
tor used by the directory and it includes a superset of sharing
processors with the addition of some other processors that
accessed the same cache line. In essence, it represents the
consumer set for that cache block. Here is how the algorithm
works for producer-consumer sharing pattern detection.

For each shared or exclusive request generated from the
recent sharers list, consumer-counter is incremented. For
requests from other processors consumer-counter is decre-
mented. Also, with cache line replacement prediction his-
tory will be reset for that specific cache block.

4.3 Verification of the Protocol
Formal verification of large scale cache coherence protocols
in a reasonable environment is a big research still being
worked on due to the complex nature of cache coherence
protocols. Although formal correctness verification of the
proposed protocol is an ongoing work, we utilized the stress
testing mechanism provided with the GEMS simulator[39].
Basically, this was designed to stress test the coherence pro-
tocols with excessive race conditions. For example, one of
the tests that we utilized heavily generates race conditions
by issuing multiple exclusive writes to same cache lines. This
synthetic testing mechanism helped us to identify the po-
tential coherence bugs. Furthermore, we managed to run all
benchmark suites to completion with successful data verifi-
cation at the end.

5. EXPERIMENTAL ANALYSIS
This section describes the experimental study; simulation
environment, workloads and the corresponding observed re-
sults.

5.1 Simulator Environment
This research is conducted with full-system simulation utiliz-
ing Virtutech Simics [38] extended with the GEMS toolset
[39]. A full-system simulator was chosen to include oper-
ating system effects to establish a more practical platform
for our measurements. Simics provides the functional full-

system simulation and GEMS provides a detailed memory
system timing infrastructure which observes all cache co-
herence protocol messages and corresponding state transi-
tions. The simulated machine is a 16-processor SPARC sys-
tem running unmodified Solaris 10. Table 1 provides the
details of the simulation environment. In order to simulate
only the computational part, breakpoints are inserted into
the benchmarks and checkpointing is used. Furthermore,
caches are warmed up to avoid cold misses as suggested in
[11].

5.2 Simulation Workloads
The benchmarks for the full-system simulation study were
selected from the SPLASH-2[52] benchmark suite and
Omni’s OpenMP version of the NAS Parallel bench-
mark(NPB) suite [1, 2]. The input data sets for the sim-
ulation workloads are provided in Table 2.

Table 2: Benchmarks and input data sets

Benchmark Input Data Set

barnes 16384 nodes, 123 seed
cg Size=1400, # of Iterations=15
cholesky input tk29.O
fft 64K complex data points
fmm 16K particles
lu cont 512x512 matrix
lu noncont 512x512 matrix
mg Size=32x32x32, # of Iteraritons=4
ocean cont 258*258 grid, 1e-7 error tolerance
ocean noncont 258*258 grid, 1e-7 error tolerance
radiosity -batch -room
raytrace car.env

Barnes is an implementation of the Barnes-Hut method to
simulate the interaction of a system of bodies over time
in a gravitational system (N-body problem). CG imple-
ments unstructured matrix vector multiplication via con-
jugate gradient method to approximate the smallest eigen-
value of a large, sparse, symmetric positive definite matrix.
Cholesky kernel performs a blocked cholesky factorization
on a sparse matrix. FFT benchmark solves a complex, one-
dimensional version of the radix−

√
n six-step FFT. FMM

application implements a parallel adaptive Fast Multi-pole
method to simulate the N-body problem like Barnes. LU
benchmark refers to the LU decomposition, both contigu-
ous and non-contiguous block allocation versions were ex-
perimented. MG is a 3D multi-grid benchmark that calcu-
lates an approximate solution u to the discrete Poisson prob-
lem ∇u2 = v with periodic boundary conditions. Ocean
application is a simulation of large-scale ocean movements
based on eddy and boundary currents. We used both of
the contiguous and non-contiguous versions of the Ocean
code. Non-contiguous version implements the grids in two-
dimensional arrays which results in non-contiguous memory
allocation. On the other hand, contiguous version imple-
ments the grids with three-dimensional arrays. First dimen-
sion is used to specify the local processor for a given parti-
tion and accordingly allows contiguous allocation of parti-
cles inside the local memory of processors that own them.
Radiosity application computes the equilibrium distribution

of light in a scene using the hierarchical diffuse radiosity
method. Raytrace application implements an algorithm to
render a three-dimensional scene onto a two-dimensional im-
age plane using optimized ray tracing.

5.3 Results
In this section, we provide results from the experiments we
conducted on a 16-core simulated CMP as described in Sec-
tion 3.1. The results are reported from the parallel sections
of each workload by utilizing the checkpointing mechanism
in [38]. We collected traces from each of the simulated work-
loads using GEMS and SIMICS to do further post-processing
to get more profile information about the sharing patterns
of each workload. The collected traces directly correspond
to the timed part of our simulations which refer to the par-
allel sections of the benchmarks. However, for all the runs
the caches are warmed-up with an earlier collected traces to
prevent cold-misses.

Figure 2 represents the upper-bound for the consumer pre-
diction mechanism. It shows the percentage of all potential
consumers out of all the LOAD operations observed and con-
sumers are detected based on the regular expression defined
in Equation 1. Since our optimization depends on the avail-
ability of such producer-consumer sharing sets, this analy-
sis can help us evaluating the performance of the proposed
protocol better. We tried to include a variety of work-
loads with different sharing patterns not just the applica-
tions with major producer-consumer sharing patterns. Ray-
trace, Barnes, and non-contiguous LU decomposition results
show that we have a limited opportunity for possible opti-
mizations with the consumer prediction mechanism. CG,
Cholesky, MG, Ocean, and Radiosity have more than 10%
of their LOADs as consumers whereas FFT, FMM, and con-
tiguous LU decomposition have around 5% consumers out
of all the LOADs observed. The least amount of consumers
ratio was observed in Barnes, non-contiguous LU with 2%,
and in Raytrace with less 0.5%.

We also analyzed the traces to generate a histogram of the
length of the consumer set for each producer. Figure 3
presents the corresponding results by illustrating the size of
potential consumer sets. Most of the applications are domi-
nated by producers with a single consumer except Cholesky
and both LU versions. If we classify the results even further;
Barnes, FMM, and Radiosity shows results in between these
two cases by having a single consumer per producer 60% of
the time. Although this profiling information is an impor-
tant aspect to evaluate the performance of the optimizations
included in our proposed protocol, it is crucial to note that
these results reveal high level profiling analysis without con-
sidering the actual identity of the consumers. In accordance
to the size of the consumer sets, number of producers per
memory block is also an important factor which can affect
the prediction accuracy of the prediction mechanism. In gen-
eral, multiple producers scenario is harder to track compared
to a single producer case. Figure 4 illustrates the histogram
of the number of producers per memory block. Again, most
of the workloads reveal a single producer case except MG
and Radiosity. Barnes and FMM exhibit similar patterns
for both the producer size and the consumer size histograms
as they have similar computational characteristics. Non-
contiguous Ocean application have either single producer or

 0%

 2%

 4%

 6%

 8%

 10%

 12%

 14%

 16%

 18%

 20%

b
ar

n
es cg

ch
o

le
sk

y ff
t

fm
m

lu
_

co
n

t

lu
_

n
o

n
co

n
t

m
g

o
ce

an
_

co
n

t

o
ce

an
_

n
o

n
co

n
t

ra
d

io
si

ty

ra
y

tr
ac

e

R
at

io
 o

f
p

o
te

n
ti

al
 c

o
n

su
m

er
s

Figure 2: Percentage of potential consumers out of all LOADs observed

 0%

 20%

 40%

 60%

 80%

 100%

b
ar

n
es cg

ch
o
le

sk
y ff
t

fm
m

lu
_
co

n
t

lu
_
n
o
n
co

n
t

m
g

o
ce

an
_
co

n
t

o
ce

an
_
n
o
n
co

n
t

ra
d
io

si
ty

ra
y
tr

ac
e

A
v
er

ag
e

C
o
n
su

m
er

s
C

o
u
n
t

H
is

to
g
ra

m

 5+

 5

 4

 3

 2

1

Figure 3: Histogram of the number of consumers per producer

two producers for 98% of all the producer-consumer sets.

Figures 5, 6 show results from the adaptive protocol com-
pared with the base MOESI invalidate directory protocol.
All results are normalized to base protocol values. Main
goal of this work is to alleviate the coherence misses over-
head in write-invalidate protocols. Corresponding results
can be found in figure 5 which shows up to 40% reduction
in coherence misses which was the case for the Ocean with
contiguous allocation benchmark. Figure 6 illustrates the
values for the total execution time measured for the par-
allel section of the workloads. Similarly contiguous Ocean
performance is improved by 15% representing a case for the
importance of coherence misses in overall application per-
formance. Also, it proves the effectiveness of the proposed
optimization via an adaptive cache coherence protocol.

Raytrace has the overall least performance improvement as
it exhibits almost no producer-consumer sharing pattern.
On the other hand, Radiosity was shown to have the largest
ratio of potential consumers. However, it includes varying
multiple producers per memory block and overall it was im-
plemented with complex dynamic structures which limited
the performance gains obtained from this application. Hav-
ing said that, we still have 20% coherence misses reduction
and almost 5% application speedup. Ocean application with
the contiguous memory allocation has better results com-
pared to Radiosity mainly because of the simpler and more
repetitive producer-consumer sharing patterns observed in
that application. For the performance results, Barnes and
FMM have again close values and their overall performance
is limited by the ratio of potential consumers. In addition,
they have a dynamic structure which makes it harder to pre-

 0%

 20%

 40%

 60%

 80%

 100%

b
ar

n
es cg

ch
o
le

sk
y ff
t

fm
m

lu
_
co

n
t

lu
_
n
o
n
co

n
t

m
g

o
ce

an
_
co

n
t

o
ce

an
_
n
o
n
co

n
t

ra
d
io

si
ty

ra
y
tr

ac
e

A
v
er

ag
e

P
ro

d
u
ce

rs
 C

o
u
n
t

H
is

to
g
ra

m

 5+

 5

 4

 3

 2

1

Figure 4: Histogram of the number of producers for each memory block

dict the consumer sets. The kernels from the NPB suite, MG
and CG, have benefited from the adaptive cache coherence
protocol as they include more than 10% of consumers. MG
suffers from the multiple-producers effect compared to CG
which resulted in lower coherence misses reduction. FFT
and LU applications show closer improvements both for the
coherence misses reduction and application speedup around
10%.

5.4 Sensitivity to PCPC size
In order to further analyze the performance of the adaptive
cache coherence protocol, this section provides performance
results for various PCPC sizes starting with 500 elements
to 16K elements. For brevity, Figure 7 only shows results
from MG and Cholesky applications which demonstrate two
different behavior. MG performance is not affected until
8K elements and then see a big jump while going from 8K
to 16K elements. On the other hand, Cholesky results ex-
hibit less sensitivity to PCPC size. This result also illus-
trates the effectiveness of the Address-Filtering mechanism
in PCPC. Furthermore, it also shows that coherence ac-
tivities for many scientific applications are associated with
a small fraction of the whole memory size that is being
touched.

6. CONCLUSIONS AND FUTURE WORK
Cache coherence overhead has proven to be a performance
bottleneck for shared-memory systems. As we see more and
more cores put on a single chip, we will have CMPs with hun-
dreds of cores in the near future with an underlying shared
memory system. Accordingly, coherence misses will become
even more important for upcoming CMPs as the cache-to-
cache latencies will also increase. Contemporary shared-
memory architectures employ write-invalidate based proto-
cols which are known to generate coherence misses that yield
to latency issues. On the other hand, write-update based
protocols can solve the coherence misses problem but they
tend to generate excessive network traffic which is especially
not desirable for CMPs. Previous studies have shown that
a single protocol approach is not sufficient for many sharing

patterns. As a solution, we presented an adaptive cache co-
herence protocol which targets write-update optimizations
for producer-consumer sharing patterns. This work targets
a minimalistic hardware extension approach to test the ben-
efits of such adaptive protocols in a practical environment.

Experimental study is conducted on a 16-core tiled CMP
by using a full-system simulator with selected scientific ap-
plications from SPLASH-2 and NPB benchmarking suites.
Results show up to 40% improvement for coherence misses
which corresponds to almost 15% application speedup. Se-
lected workloads were further profiled using trace-based sim-
ulation in order to interpret the results. This profiling analy-
sis is also provided as a guide. In addition, we selected work-
loads with different sharing patterns and sizes to test the
performance of our proposed work for broader set of appli-
cations. Although performance speedup numbers are highly
sensitive to the implementation and underlying toolset re-
strictions, we show them to represent the overall effect on
the execution time. We believe further performance gains
can be obtained by more aggressive prediction mechanisms
and also employing a weaker memory consistency model.

To test the cache coherence overhead and analyze potential
remedies for cache-to-cache latencies for larger CMPs, we
are working on 64-core and 128-core CMPs as an immediate
extension to our study. Instruction-based predictors can be
studied to evaluate the effectiveness compared to address-
based predictions. In general, coherence predictor domain
can be further investigated to tune the previous work for
upcoming CMPs and many-core architectures.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

b
ar

n
es cg

ch
o

le
sk

y ff
t

fm
m

lu
_

co
n

t

lu
_

n
o

n
co

n
t

m
g

o
ce

an
_

co
n

t

o
ce

an
_

n
o

n
co

n
t

ra
d

io
si

ty

ra
y

tr
ac

e

N
o

rm
al

iz
ed

 C
o

h
er

en
ce

 M
is

se
s

Adaptive

Base

Figure 5: Coherence Misses

 0.5

 0.6

 0.7

 0.8

 0.9

 1

b
ar

n
es cg

ch
o

le
sk

y ff
t

fm
m

lu
_

co
n

t

lu
_

n
o

n
co

n
t

m
g

o
ce

an
_

co
n

t

o
ce

an
_

n
o

n
co

n
t

ra
d

io
si

ty

ra
y

tr
ac

e

N
o

rm
al

iz
ed

 E
x

ec
u

ti
o

n
 T

im
e

Adaptive

Base

Figure 6: Execution Time

 0%

 5%

 10%

 15%

 20%

 25%

 30%

500 1K 2K 4K 8K 16K

C
o

n
su

m
er

 M
is

se
s

R
ed

u
ct

io
n

PCPC size(# of blocks)

mg

cholesky

Figure 7: Sensitivity to PCPC size based on obtained coherence misses reduction

7. REFERENCES
[1] NAS Parallel Benchmarks,

http://www.nas.nasa.gov/resources/software/npb.html.

[2] NAS Parallel Benchmarks, openmp version developed
by omni group,
http://www.hpcs.cs.tsukuba.ac.jp/omni-openmp.

[3] Teraflops research chip,
http://techresearch.intel.com/articles/tera-
scale/1449.htm.

[4] Tile-gx100, a 100-core microprocessor from Tilera
corporation, http://www.tilera.com.

[5] H. Abdel-Shafi, J. Hall, S. V. Adve, and V. S. Adve.
An evaluation of fine-grain producer-initiated
communication in cache-coherent multiprocessors. In
International Symposium on High-Performance
Computer Architecture (HPCA), pages 204–, 1997.

[6] M. Acacio, J. Gonzalez, J. Garcia, and J. Duato. A
novel approach to reduce L2 miss latency in
shared-memory multiprocessors. In IPDPS ’02:
Proceedings of the International Parallel and
Distributed Processing Symposium, pages 62–69, 2002.

[7] M. Acacio, J. González, J. Garćıa, and J. Duato.
Owner prediction for accelerating cache-to-cache
transfer misses in a cc-NUMA architecture. In
Proceedings of the 2002 ACM/IEEE conference on
Supercomputing, pages 1–12. IEEE Computer Society
Press Los Alamitos, CA, USA, 2002.

[8] M. E. Acacio, J. González, J. M. Garćıa, and
J. Duato. The use of prediction for accelerating
upgrade misses in cc-NUMA multiprocessors. In IEEE
PACT, pages 155–164. IEEE Computer Society, 2002.

[9] A. Agarwal and M. Levy. The kill rule for multicore.
In DAC ’07: Proceedings of the 44th annual conference
on Design automation, pages 750–753. IEEE, 2007.

[10] S. R. Alam, R. F. Barrett, J. A. Kuehn, P. C. Roth,
and J. S. Vetter. Characterization of scientific
workloads on systems with multi-core processors. In
IISWC, pages 225–236. IEEE, 2006.

[11] A. R. Alameldeen, M. M. K. Martin, C. J. Mauer,
K. E. Moore, M. Xu, M. D. Hill, D. A. Wood, and
D. J. Sorin. Simulating a $2m commercial server on a
$2k pc. IEEE Computer, 36(2):50–57, 2003.

[12] C. Anderson and A. R. Karlin. Two adaptive hybrid
cache coherency protocols. In International
Symposium on High-Performance Computer
Architecture (HPCA), pages 303–313, 1996.

[13] S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai.
The impact of performance asymmetry in emerging
multicore architectures. In ISCA ’05: Proceedings of
the 32nd annual international symposium on
Computer Architecture, pages 506–517, Washington,
DC, USA, 2005. IEEE Computer Society.

[14] E. E. Bilir, R. M. Dickson, Y. Hu, M. Plakal, D. J.
Sorin, M. D. Hill, and D. A. Wood. Multicast
snooping: A new coherence method using a multicast
address network. In ISCA ’99: Proceedings of the 26th
annual international symposium on Computer
architecture, pages 294–304, 1999.

[15] G. Byrd and M. Flynn. Producer-consumer
communication in distributed shared memory
multiprocessors. Proceedings of the IEEE,
87(3):456–466, Mar 1999.

[16] L. Cheng and J. B. Carter. Extending cc-numa
systems to support write update optimizations. In SC
’08: Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, page 30. IEEE/ACM, 2008.

[17] L. Cheng, J. B. Carter, and D. Dai. An adaptive cache
coherence protocol optimized for producer-consumer
sharing. In International Symposium on
High-Performance Computer Architecture (HPCA),
pages 328–339. IEEE Computer Society, 2007.

[18] L. Cheng, N. Muralimanohar, K. Ramani,
R. Balasubramonian, and J. B. Carter.
Interconnect-aware coherence protocols for chip
multiprocessors. In ISCA ’06: Proceedings of the 33rd
annual international symposium on Computer
Architecture, pages 339–351, Washington, DC, USA,
2006. IEEE Computer Society.

[19] M. Chu, R. Ravindran, and S. Mahlke. Data Access
Partitioning for Fine-grain Parallelism on Multicore
Architectures. In MICRO ’07: Proceedings of the 40th
Annual IEEE/ACM International Symposium on
Microarchitecture, pages 369–380, Washington, DC,
USA, 2007. IEEE Computer Society.

[20] A. L. Cox and R. J. Fowler. Adaptive cache coherency
for detecting migratory shared data. In International
Symposium on Computer Architecture (ISCA), pages
98–108, 1993.

[21] F. Dahlgren. Boosting the performance of hybrid
snooping cache protocols. In ISCA ’95: Proceedings of
the 22nd annual international symposium on
Computer architecture, pages 60–69, New York, NY,
USA, 1995. ACM.

[22] F. Dahlgren and P. Stenström. Reducing the write
traffic for a hybrid cache protocol. In International
Conference on Parallel Processing (ICPP), pages
166–173, 1994.

[23] N. Eisley, L.-S. Peh, and L. Shang. In-network cache
coherence. In MICRO 39: Proceedings of the 39th
Annual IEEE/ACM International Symposium on
Microarchitecture, pages 321–332, Washington, DC,
USA, 2006. IEEE Computer Society.

[24] D. Geer. Industry trends: Chip makers turn to
multicore processors. IEEE Computer, 38(5):11–13,
2005.

[25] D. Ghosh, J. B. Carter, and H. D. III.
Perceptron-based coherence predictors. In Proc. of 2nd
Workshop on Chip Multiprocessor Memory Systems
and Interconnects (CMP-MSI), in conjunction with
ISCA 2008.

[26] P. F. Gorder. Multicore processors for science and
engineering. Computing in Science and Eng., 9(2):3–7,
2007.

[27] H. K. Grahn and P. Stenström. Evaluation of a
competitive-update cache coherence protocol with
migratory data detection. Journal of Parallel and
Distributed Computing, 39:39–2, 1996.

[28] D. Gustavson. The scalable coherent interface and
related standards projects. Micro, IEEE, 12(1):10–22,
Feb 1992.

[29] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D.
Sleator. Competitive snoopy caching. Algorithmica,
3:77–119, 1988.

[30] S. Kaxiras and J. R. Goodman. Improving cc-NUMA

performance using instruction-based prediction. In
International Symposium on High-Performance
Computer Architecture (HPCA), pages 161–, 1999.

[31] S. Kaxiras and C. Young. Coherence communication
prediction in shared-memory multiprocessors. In
International Symposium on High-Performance
Computer Architecture (HPCA), pages 156–167, 2000.

[32] A. Kayi, E. Kornkven, T. El-Ghazawi, S. Al-Bahra,
and G. B. Newby. Performance analysis and tuning for
clusters with ccnuma nodes for scientific computing - a
case study. International Journal of Computer Systems
Science and Engineering, 24(5), September 2009.

[33] D. Koufaty, X. Chen, D. K. Poulsen, and J. Torrellas.
Data forwarding in scalable shared-memory
multiprocessors. In International Conference on
Supercomputing (ICS), pages 255–264, 1995.

[34] A.-C. Lai and B. Falsafi. Memory sharing predictor:
The key to a speculative coherent dsm. In ISCA ’99:
Proceedings of the 26th annual international
symposium on Computer architecture, pages 172–183,
1999.

[35] A.-C. Lai and B. Falsafi. Selective, accurate, and
timely self-invalidation using last-touch prediction. In
International Symposium on Computer Architecture
(ISCA), pages 139–148, 2000.

[36] A. R. Lebeck and D. A. Wood. Dynamic
self-invalidation: Reducing coherence overhead in
shared-memory multiprocessors. In ISCA ’95:
Proceedings of the 22nd annual international
symposium on Computer architecture, pages 48–59,
1995.

[37] S. Leventhal and M. Franklin. Perceptron based
consumer prediction in shared-memory
multiprocessors. In ICCD 2006: International
Conference on Computer Design, pages 148–154, Oct.
2006.

[38] P. S. Magnusson, M. Christensson, J. Eskilson,
D. Forsgren, G. H̊allberg, J. Högberg, F. Larsson,
A. Moestedt, and B. Werner. Simics: A full system
simulation platform. IEEE Computer, 35(2):50–58,
2002.

[39] M. M. K. Martin. Formal verification and its impact
on the snooping versus directory protocol debate. In
ICCD 2005: International Conference on Computer
Design, pages 543–449. IEEE Computer Society, 2005.

[40] M. M. K. Martin, P. J. Harper, D. J. Sorin, M. D.
Hill, and D. A. Wood. Using destination-set prediction
to improve the latency/bandwidth tradeoff in
shared-memory multiprocessors. In International
Symposium on Computer Architecture (ISCA), pages
206–217. IEEE Computer Society, 2003.

[41] M. M. K. Martin, D. J. Sorin, A. Ailamaki, A. R.
Alameldeen, R. M. Dickson, C. J. Mauer, K. E.
Moore, M. Plakal, M. D. Hill, and D. A. Wood.
Timestamp snooping: an approach for extending
smps. In International conference on Architectural
support for programming languages and operating
systems (ASPLOS), pages 25–36, 2000.

[42] M. M. K. Martin, D. J. Sorin, M. D. Hill, and D. A.
Wood. Bandwidth adaptive snooping. In International
Symposium on High-Performance Computer
Architecture (HPCA), pages 251–262, 2002.

[43] M. R. Marty, J. D. Bingham, M. D. Hill, A. J. Hu,
M. M. K. Martin, and D. A. Wood. Improving
multiple-cmp systems using token coherence. In ISCA
’05: Proceedings of the 32nd annual international
symposium on Computer Architecture, pages 328–339.
IEEE Computer Society, 2005.

[44] S. S. Mukherjee and M. D. Hill. Using prediction to
accelerate coherence protocols. In International
Symposium on Computer Architecture (ISCA), pages
179–190, 1998.

[45] H. Nilsson and P. Stenström. An adaptive
update-based cache coherence protocol for reduction
of miss rate and traffic. In Proc. Parallel Architectures
and Languages Europe (PARLE) Conf., Athens,
Greece (Lecture Notes in Computer Science, 817,
pages 363–374. Springer-Verlag, 1994.

[46] J. Nilsson and F. Dahlgren. Improving performance of
load-store sequences for transaction processing
workloads on multiprocessors. In International
Conference on Parallel Processing (ICPP), pages
246–, 1999.

[47] J. Nilsson and F. Dahlgren. Reducing ownership
overhead for Load-Store sequences in cache-coherent
multiprocessors. In IPDPS ’00: Proceedings of the
International Parallel and Distributed Processing
Symposium, pages 684–692. IEEE Computer Society,
2000.

[48] J. Nilsson, A. Landin, and P. Stenström. The
coherence predictor cache: A resource-efficient and
accurate coherence prediction infrastructure. In
IPDPS ’03: Proceedings of the International Parallel
and Distributed Processing Symposium, page 10. IEEE
Computer Society, 2003.

[49] K. Olukotun and L. Hammond. The future of
microprocessors. Queue, 3(7):26–29, 2005.

[50] A. Raynaud, Z. Zhang, and J. Torrellas.
Distance-adaptive update protocols for scalable
shared-memory multiprocessors. In HPCA ’96:
Proceedings of the Second International Symposium on
High-Performance Computer Architecture, pages
323–334, Feb 1996.

[51] P. Stenström, M. Brorsson, and L. Sandberg. An
adaptive cache coherence protocol optimized for
migratory sharing. In International Symposium on
Computer Architecture (ISCA), pages 109–118, 1993.

[52] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The SPLASH-2 Programs:
Characterization and methodological considerations.
In ISCA ’95: Proceedings of the 22nd annual
international symposium on Computer architecture,
pages 24–36, 1995.

[53] T.-Y. Yeh and Y. N. Patt. Alternative
implementations of two-level adaptive branch
prediction. In International Symposium on Computer
Architecture (ISCA), pages 124–134, 1992.

